Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Мембрана микропористая

    Газ Гетерогенные мембраны (микропористые) Гомогенные мембраны  [c.315]

    Первое сообщение о возможности практического использования явления селективной проницаемости компонентов газовой смеси через полимерные или металлические перегородки — мембраны было сделано Грэхемом в середине XIX века. Однако от открытия явления до его промышленного применения прошло более столетия. Это объясняется, прежде всего тем, что в то время промышленность не была подготовлена к использованию этого явления. Внедрению мембранного метода разделения газов в промышленность способствовали результаты изучения явлений, связанных с селективным переносом молекул газов через сплошные (гомогенные) и микропористые мембраны, имеющие неорганическую или полимерную природу, успехи в синтезе полимеров с газоразделительными свойствами, разработка методов получения высокопроизводительных (асимметричных, композиционных, напыленных и т. д.) полимерных, металлических и керамических мембран, создание конструкций и методов расчета мембранных аппаратов и установок. [c.6]


    Мембраны второго типа характеризуются существенным влиянием поверхностных явлений, прежде всего адсорбции возможно появление конденсированной фазы и эффекта капиллярности химический потенциал компонента зависит не только от температуры, давления и состава газовой смеси, но также и от свойств матрицы за счет поверхностной энергии. Влияние скелета мембраны на процесс разделения не ограничено, как в газодиффузионных, чисто структурными характеристиками, а предполагает появление новых видов массопереноса. Однако транспорт компонентов в основном материале мембраны исключен. Примером такого рода систем являются микропористые структуры и газовые смеси под давлением, содержащие компоненты со значительной молекулярной массой. [c.13]

    Суть этого процесса заключается в следующем. Нагретый до сравнительно невысоких температур (порядка 30-70 °С) исходный раствор (горячий) подается с одной стороны гидрофобной микропористой мембраны. Вдоль другой стороны мембраны движется менее нагретый (холодный) растворитель (обычно вода). Поскольку мембрана гидрофобна, а размеры пор ее достаточно малы (порядка одного микрометра и менее), то жидкая фаза в поры мембраны не проникает. Испаряющийся с поверхности горячего раствора пар (поверхностью испарения в этом случае являются образующиеся на входе в поры мениски раствора) проникает в поры мембраны, диффундирует через слой воздуха в поре и конденсируется на поверхности менисков холодной жидкости. При этом в порах создается разрежение, что ускоряет процесс испарения и, следовательно, повышает его эффективность. Так как температура исходного раствора невысока, то для проведения процесса мембранной дистилляции можно применять низкопотенциальную тепловую энергию - тепло нагретой после холодильников воды, отходящих газов (например, выхлопных газов двигателей внутреннего сгорания и др.), геотермальных вод и, наконец, солнечную энергию. [c.338]

    Композиционные мембраны на микропористых подложках. [c.307]

    Так, использование в качестве мембраны для разделения изотопов урана микропористых керамических (или металлокерамических асимметричных) капилляров (или трубок) целесообразно только при повышенных температурах и пониженных давлениях, причем из-за небольших значений фактора разделения в паре необходим многоступенчатый процесс. Мембран- [c.315]


    Полученная подобным образом мембрана имеет анизотропную структуру — тонкий (примерно 0,25—0,5 мкм) поверхностный слой на микропористой подложке (примерно 100—200 мкм). Основная масса с крупнопористой структурой не представляет собой селективного барьера, а обеспечивает лишь механическую прочность мембраны и служит как бы подложкой для поверхностного слоя, связанной с ним в одно [c.48]

    Мембраны из микропористого стекла. Стеклянные мембраны обладают такими ценными свойствами, как высокая термическая и химическая стойкость, неподверженность действию микроорганизмов и жесткость структуры. Эти свойства позволяют использовать их при разделении растворов в широком интервале pH (1—10) и проводить стерилизацию. Мембраны из микропористого стекла могут быть изготовлены в виде пластин, пленок, трубок или капилляров. [c.74]

    Мембранная дистилляция протекает при наличии разности температур по разные стороны от микропористой мембраны. Жидкости не должны смачивать мембрану, а разность давлений по разные стороны от мембраны должна быть меньше капиллярного давления. В этом случае жидкость не заполняет поры мембраны, а через мембрану проходит только пар. Жидкость испаряется с той стороны мембраны, где температура более высокая, и пар конденсируется со стороны жидкости с более низкой температурой. Мембрана в процессе разделения непосредственно не участвует. Она играет роль барьера, разделяющего две жидкости. Селективность процесса определяется условиями равновесия в системе жидкость — пар. Процесс мембранной дистилляции применяется в основном к водным растворам, содержащим растворенные неорганические вещества. Однако данный метод может применяться и к водным растворам с низкими концентрациями летучих компонентов, например для разделения смеси вода— этиловый спирт. [c.33]

    Напыленные мембраны могут быть получены путем напыления на микропористую подложку различных веществ (из растворов и расплавов полимеров, металлов и др.), обладающих склонностью к сцеплению с материалом подложки. При этом размер пор можно направленно регулировать изменением толщины напыленного на подложку слоя. [c.76]

    Обратный осмос — процесс фильтрования (концентрирования) растворов иод давлением. При обратном осмосе применяют микропористые мембраны и для преодоления их сопротивления необходимо давление до 10 МПа и выше. Кроме сопротивления мембраны [c.243]

    Микропористые фильтры изготовляют из неорганических веществ и полимеров. Спеканием порошков можно получить мембраны из фарфора, металлов и сплавов. Полимер- [c.24]

    Применяют два типа мембран - гомогенные и микропористые. В гомогенных мембранах анализируемый газ растворяется в материале мембраны и диффундирует через нее, а в микропористых -газ диффундирует через поры мембраны. Коэффициенты диффузии газов в порах мембраны на несколько порядков выше, чем в фазе мембраны. Поэтому электроды с пористыми мембранами менее инерционны по сравнению с электродами с гомогенными мембранами. Однако в пористых мембранах возможен перенос воды через мембрану, что ведет к изменению концентрации электролита внутри электрода и, следовательно, к изменению его потенциала. [c.210]

    Мембрана с анизотропной структурой состоит из тонкого поверхностного слоя на микропористой подложке . Разделение происходит на поверхностном активном слое, и практически весь перепад давления приходится на этот слой. [c.563]

    Полупроницаемые мембраны разделяют на две группы пористые и непористые. Пористые полимерные мембраны получают обычно путем удаления растворителей или вымыванием предварительно введенных добавок из растворов полимеров при их формовании. Полученные таким способом мембраны имеют тонкий (0,25—0,5 мкм) поверхностный слой на микропористой подложке толщиной 100—200 мкм. Процесс мембранного разделения осуществляется в поверхностном активном слое, а подложка обеспечивает механическую прочность мембраны. [c.431]

    Трубчатый мембранный элемент (рис. 24-18) состоит из мембраны 2 и дренажного каркаса. Дренажный каркас изготовляют из трубки, являющейся опорой для мембранного элемента и обеспечивающей отвод пермеата, и микропористой подложки 3, исключающей вдавливание мембраны 2 в дренажные каналы трубки под воздействием рабочего давления разделяемой смеси. Различают трубчатые мембранные элементы с мембраной 2 внутри (рис. 24-18, а), снаружи (рис. 24-18, трубки и с комбинированным (рис. 24-18, в) ее расположением. [c.349]

    Микропористая мембрана-фильтр (размер пор 0,8— 8 мкм) была получена при бомбардировке поликарбонатной пленки нейтронами [30]. Мембраны термостойки, химически стойки, обладают хорошими механическими свойствами и могут быть использованы как фильтры для промышленных целей. [c.287]


    Полимерная мембрана может быть как микропористой, так и монолитной (например, из продукта сополимеризации этилена и винилацетата), при этом она должна характеризоваться определенной проницаемостью в отношении конкретного ЛВ. Снаружи на поверхности мембраны расположен слой полимерного адгезива, например, силикона или полиизобутилена, который обеспечивает контакт с кожей (рис. 6). [c.759]

    В газочувствительных электродах внутренний стандартный раствор отделен от анализируемого раствора тонкой газопроницаемой мембраной (рис. 7.2). Микропористая мембрана из гидрофобного пластика обладает водоотталкивающими свойствами. Поры мембраны заполнены только воздухом или другими газами. Раство- [c.107]

    В установках получения обогащенного кислорода с помощью мембранных аппаратов плоококамерного типа используются и разработанные Дженерал электрик композиционные мембраны Р-П, состоящие из селективного слоя блок-сополимера по-лидиметилсилоксана с поликарбонатом, толщиной 0,1 ммм и микропористой подложки Селектрон с порами размером 50 нм (500 А) [81]. Мембрана эта обладает высокой газопроницае- [c.311]

    Для разделения изотопов водорода кроме микропористых можно применять сплошные металлические [100, 101] (палладий и его сплавы) или полимерные (силиконовый каучук, полиэти-лентерефталат, тетрафторэтилен, ацетат целлюлозы и т. д.) мембраны [99, 102, 103]. При этом проницаемость протия через подобные мембраны выше, чем дейтерия и трития. По сравнению с микропористыми и палладиевыми мембранами селективность полимерных непористых мембран ниже, но, учитывая, что они намного дешевле и не требуют применения высоких температур (а значит более выгодны с точки зрения затрат энергии), можно ожидать их широкого применения для разделения изотопов водорода. [c.315]

    Центральный резервуар может состоять из глицерина, этиленгликоля, пропиленгликоля, воды, смеси метилцеллюлозы с водой, альгината натрия, поливинилпирролидона, полиоксиэтиленстеарата, жирных кислот. Микропористые мембраны могут состоять из поликарбонатов, поливинилхлоридов, полиамидов, полисульфонов, поливинилацетатов, полиуретана, полиэфиров, акриловых смол, эфиров целлюлозы, кросс-сшитых полиэтиленоксида, поливинилпирролидона, поливинилового спирта. [c.400]

    Для разделения радиоактивных благородных газов наибольшее распространение нашли полимерные мембраны в виде полых волонон, изготовленные из силиконового каучука (сплошная мембрана) или из ацетата целлюлозы (микропористое волокно), а также микропористая пленка из 4-фторэтилена— табл. 8.20, 8.21. Из табл. 8.21 видно, что селективные свойства [c.315]

    Осал<дениьге мембраны получают продавливанием через микропористую подложку какого-либо раствора с небольшим содержанием тон-кодиспергированного вещества, которое тонким слоем осаждается на подложке. При дальнейшей обработке (обычно термической) на по- [c.81]

    Турбулизация жидкости в ячейке обеспечивается с помо щью магнитной мешалки с приводом, принцип действия которой ясен из рис 111-2 При вращении магнита 1 синхронно приводится во вращение и мешалка 2, которая выполняется из низкоуглеродистой стали, покры-ТОЙ слоем коррозионно стойкопо вещества ( например, эпоксидной смо-лой) Корпус ячейки (фланцы 3 и 4) изготовляется из нержавеющей стали, которая не оказывает экранирующего действия на магнит. Полупроницаемая мембрана 7 укладывается между двумя прокладками из ватмана —кольцеобразной 5 и сплошной 6 на микропористую подлож- [c.110]

    Очистка растворов некоторых веществ бывает необходимой для ироведення точных анализов. При этом ультрафильтрация может оказаться наиболее простым и эффективным методом очистки. Например, у льтрафильтрацией крови через микропористые мембраны можио получить фильтрат, в котором легко определить содержание глюкозы простым колориметрическим методом, так как в фильтрате отсутствуют протеины, полисахариды и друпие высокомолекулярные вещества, влияющие на результат анализа. [c.287]

    В каждом методе применяются соответствующие мембраны. Различия в прохождении веществ через мембраны могут быть связаны как с равновесными, так и с кинетическими свойствами разделяемой системы. По этим признакам мембраны подразделяют на фильтрационные (полупроницаемые) и диффузионные. Первые из них способны разделять вещества в равновесных условиях, размер их пор соизмерим с размерами проникающих частиц или молекул. Диффузионные мембраны обычно применяют для разделения газов методом газовой диффузии. Размер иор у них должен быть таким, чтобы обеспечить кнудсеновский поток газов через мембраны. Фильтрационные мембраны в свою очередь можно классифицировать на макропористые, переходнопористые и микропористые (подобно адсорбентам). Микропористые Мембраны могут быть нейтральными или нонитовьши. [c.238]

    Монолитные Р. м. получ. формованием из р-ров (по сухому способу) или расплавов полимеров (см. Пленки полимерные). При вытягивании этих мембран в спец. условиях им м. б. придана микропористость при облучении атомными ядрами или ионами с нослед. выщелачиванием продуктов деструкции из них изготовляют т. н. ядерные микрофильтрац. мембраны. Пористые Р. м. получ. способом мокрого формования или испарением из сформованных жидких пленок (нитей) р-рителя в последнем случае в формовочный р-р предварительно вводят осадитель, упругость паров к-рого ниже, чем у р-рителя (метод спонтанного гелеобразования). При удалении р-рителя р-р распадается на фазы, в результате чего образуется пористая пленка. Для получ. асимметричных Р. м. (т. е. двухслойных, один слой к-рых монолитный, второй — пористый) с пов-сти [c.491]

    Газочувствительные потенциометрические сенсоры включают электрохимическую ячейку с ион-селективным электродом и электродом сравнения. Оба они погружены в раствор внутреннего электролита. Внутренний электролит отделен от анализируемого раствора с помощью газопроницаемой мембраны (рис. 7.7-1). Микропористая или гомогенная мембрана имеет обычно толщину 0,1 мм. Микропористые мембраны изготавливают из гидрофобных полимеров, например, политетрафторэтилена (ПТФЭ) или полипропилена. В таких мембранах 70% пор имеют диаметр менее 1мкм, так что газы могут проникать за счет эффузии, тогда как вода или ионы отталкиваются гидрофобной мембраной. [c.498]

    Напыленные мембраны получают напылением на микропористую подложку различных веществ (из растворов и расплавов полимеров, металлов и др.), обладающих склонностью к сцеплению с материалом подложки. При этом, изменяя толщину напыленного на подложку слоя, можно направленно регулировать размер пор. Примером напыленных мембран могут служить ультратонкие мембраны, полученные так называемой плазменной полимеризацией (в тлеющем разряде) органических соединений (акрилони-трил, кумол, этилбензол, пиридин, дихлорэтан и многие другие) [c.320]

    Скорость (и продолжительность) дозирования ЛВ зависит от структуры используемого полимерного элемента от макроуровня (пористая или непористая мембрана или матрица) через такие структуры промежуточных уровней, как неоднородности сшитых полимерных структур (трехмерные нерастворимые мембраны и матрицы) и распределения кристаллических и аморфных областей (кристаллизующиеся мембраны и матрицы), до неоднородностей молекулярного уровня (изменение состава, молекулярной массы и микроблочности сополимеров). Наибольшие скорости дозирования (от 10 до 500 мкг/ч) обеспечивают только микропористые мембраны и матрицы [26] однако это приводит к быстрому исчерпанию ЛВ, заключенного в TT , и время работы TT с микропористыми дозирующими элементами не превышает суток [27]. Более низкие скорости дозирования (не выше десятков микрограммов в сутки) достигаются при использовании непористых мембран и матриц, полимерный материал которых находится в стеклообразном состоянии [28]. При переходе в высокоэластичное состояние проницаемость увеличтгеается в сотни и тысячи раз [26, 28]. Такое увеличение может быть достигнуто не только повышением температуры дозирующего элемента (например, при воспалительном процессе), но и при изменении состава сополимера (СПЛ) - материала мембраны (например, для этилена с винилацетатом (Э-ВА) при увеличении содержания В А в СПЛ). Хотя и не столь сильно, как изменение состава СПЛ, на проницаемость полимерных материалов влияют и такие структурные и морфологические изменения полимера, как молекулярная масса, кристалличность и структура кристаллических областей, природа и количество других, помимо ЛВ, низкомолекулярных включений [29, 30]. [c.763]

    Аккумулятор состоит из цинкового электрода, катионообменной или микропористой мембраны, положительного бромного электрода (пористого графита или титана). Рабочая температура - 25-35°С. Для снижения потерь брома и саморазряда предложено связывать бром в комплексные соединения путем введения в католитный раствор бромида цинка и НВг (pH qo тaвляeт 2-3), лигандов (например, четвертичных соединений аммония). Для уменьшения дендритообразования в анолит вводят специальные ингибиторы. [c.211]

    Если лиофобная микропористая мембрана одной стороной обращена к лету-че 1 жидкости, а другой к газу, то газ может протекать через мембрану и самопроизвольно пробульки-вать через жидкость против значительного давления ири условии, что поры достаточно малы и выполняются некоторые необходимые условия (рис, 3.41). Если к мембране подходит иот К сухого газа, подогретого до температуры жидкости, про-булькивание устойчиво. Если газ подогрет и насыщен парами при температуре жидкости, пробулькиванне прекращается. Скорость пробулькивания тем меньше, чем меньше летучесть жидкости (летучесть пропорциональна давлению насыщенных паров), С ростом температуры жидкости скорость пробулькивания возрастает. [c.165]

    Для очистки растворов от бактерий-контаминантов в США, например, выпускают в продажу так называемый Спй Сар-капсу-лы, содержащие двойной слой гидрофильной полисульфоновой микропористой (диаметр пор 0,2 мкм) мембраны, обеспечивающей задерживание бактерий при высоком потоке жидкости [c.254]

    В последние годы все чаще применяют специальные емкости (сосуды) для изоляции в асептических условиях органов из молодых растений. Фирма Sigma ( IIIA) к 1990 г. ввела новые мембранные наборы для культур растительных тканей. Их изготавливают из микропористой полипропиленовой мембраны, обработанной специальным ПАВ для улучшения прохождения питательных веществ. Мембранные наборы могут быть использованы при культивировании протопластов, в соматическом эмбриогенезе, при получении культур цветов и в других направлениях. [c.501]

    По- идимому, детальные исследования механизмов переноса в новых ультрафильтрационных мембранах не опубликованы. В работе /1/ сообщается, что одни мембраны фирмы Аткоп обладают микропористой структурой, другие - действуют как диффузионный барьер, через который переносятся и диффузионный и вязкий потоки растворенного вещества. Действие мембран этих двух типов совершенно различно. Микропористьге мембраны засоряются и закупориваются гораздо скорее, они менее избирательны по отношению к [c.173]


Смотреть страницы где упоминается термин Мембрана микропористая: [c.231]    [c.435]    [c.241]    [c.461]    [c.97]    [c.594]    [c.759]    [c.760]    [c.215]    [c.225]    [c.176]    [c.314]   
Основы современного электрохимического анализа (2003) -- [ c.210 ]




ПОИСК





Смотрите так же термины и статьи:

Мембрана для обратного осмоса микропористые



© 2025 chem21.info Реклама на сайте