Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Калия ион, определение фотометрией пламени

    Факторы специфичности при определении натрия и калия на фотометре. Пламя светильный газ-воздух I [c.157]

    Ход анализа. Из средней пробы почвы отбирают и взвешивают на технохимических весах 20 г, переносят навеску в бутылку (объемом 400—500 мл) и приливают туда же 200 мл 1 н. ацетата аммония. Закрывают бутылку каучуковой пробкой, взбалтывают суспензию в течение 1 часа на ротаторе, фильтруют через плотный складчатый фильтр. Отбирают необходимый объем прозрачного раствора и вводят его в пламя горелки фотометра (рис. 41). Интенсивность излучения калием определенной волны пропор-. циональна его концентрации. Это излучение улавливается фото- [c.275]


    Предназначается для количественного определения натрия, калия и кальция в растворе. Источником возбуждения спектров является пламя горючей смеси пропан — бутан — в оздух. Для выделения спектральной линии Ыа, К или полосы Са(0Н)2 применяют интерференционные светофильтры с шириной пропускания в середине максимума 13 нм. Для поглощения мешающих излучений имеются абсорбционные светофильтры. Фотоприемником является фотоэлемент Ф-9. Выходной сигнал фиксируется стрелочным прибором-амперметром М—266 М. Нижний предел измерений —0,5 мкг/мл для Ка и К н 5 мкг/мл для Са. Продолжительность одного измерения 30 с. Расход исследуемого раствора 6,5 мл/с. На рис. 43 дана схема передней панели фотометра ФПЛ-1. [c.246]

    При фотометрировании обычно используют наиболее интенсивные резонансные линии калия 766,5 и 769,9 ммк, расположенные на границе между видимой и инфракрасной частями спектра. В фотографической спектрофотометрии пламени использовались также фиолетовые линии 404,4 и 404,7 ммк. Дела лись попытки применить их и в фотоэлектрической фотометрии пламени 2 . Вместе с предыдущими линиями они обусловливают характерный сиреневый цвет пламени, в котором испаряются соли калия. Как и в случае натрия, при определении калия по линиям 766,5—769,9 ммк предпочтительнее использовать низкотемпературное пламя смеси светильного газа с воздухом, при котором интенсивность излучения мешающих щелочноземельных металлов значительно уменьшена по сравнению с интенсивностью излучения калия (ср. стр. 130). [c.210]

    Атомно-абсорбционный спектральный анализ, абсорбционная фотометрия пламени — метод основан на способности свободных атомов некоторых элементов селективно поглощать резонансное излучение определенной для каждого элемента длины волны. Анализируемый раствор в виде аэрозоля распыляют в пламя горелки. В пламени происходит термическая диссоциация молекул с образованием атомов, находящихся в невозбужденном состоянии. Эти атомы поглощают излучение, проходящее через пламя горелки от внешнего стандартного источника излучения (например, от лампы с полым катодом), содержащего пары определяемого элемента. Для определения каждого элемента необходима отдельная лампа. Излучение лампы проходит через пламя горелки. Измеряют поглощение, т.е. отношение интенсивностей излучения, прошедшего через пламя без пробы и после распыления исследуемого раствора [57]. Метод позволяет определять до 10 г/мл солей серебра, бериллия, висмута, кальция, кадмия, меди, калия, лития, натрия, таллия и др. [c.17]


    В пламени светильного газа или водорода при 2000—3000° С возбуждаются спектры элементов с низкими потенциалами возбуждения (щелочные и частично щелочноземельные элементы). Такое пламя используют при анализе растворов и эмульсий в пламенных фотометрах, предназначенных для определения содержания калия, лития, натрия при массовых анализах. [c.144]

    В горелку поступают горючий газ, воздух и анализируемый раствор, который распыляется струей воздуха в специальном распылителе, работающем по принципу пульверизатора, и в виде аэрозоли подается в пламя горелки. Возникающее излучение с помощью оптической системы проектируется на монохроматизирующее устройство, которое выделяет излучения с определенными длинами волн. В пламенных эмиссионных фотометрах — это блок сменяемых светофильтров. Излучение направляется на фотоэлемент, фототок, возникающий под действием излучения, усиливается и подается на гальванометр. Интенсивность излучения атомов и, следовательно, величина отклонения стрелки гальванометра в большинстве случаев пропорциональны концентрации вещества в анализируемом растворе. Используя соответствующие светофильтры, можно этим методом определить, например, содержание натрия и калия при совместном присутствии, поскольку основные полосы излучения этих элементов заметно отличаются по длине волны (натрий — 589 нм, калий — 766 нм). [c.231]

    Ход анализа. Пробу готовят, растворяя 1 г породы, выпаривая ее досуха с концентрированной плавиковой кислотой и со смесью концентрированной серной и хлорной кислот, с последующим растворением влажного остатка в 20 мл 0,5 н. соляной кислоты. Нерастворимый остаток отфильтровывают и отбрасывают. Фильтрат разбавляют до 50 мл водой и берут две аликвотных части по 5 мл на анализ. Разбавляют одну аликвотную часть 5 мл воды, а другую — 5 мл воды, содержащей по 5 мкг/мл натрия и калия. Вводят каждый из этих растворов в пламя фотометра и заканчивают определение обычным путем. [c.85]

    Авторы работ [7, 8] предлагают определить марганец в силикатных породах методом эмиссионной фотометрии пламени. Однако эти методы не нащли широкого применения, вероятно, по той причине, что определению марганца очень мешает калий линия марганца наблюдается при 403 нм, линия калия — при 404 нм. Фосфат- и сульфат-ноны обычно подавляют эмиссию марганца, в то время как хлор- и перхлорат-ионы повышают эмиссию пламени. В настоящее время для определения марганца в силикатных материалах все, чаще используются методы атомно-аб-сорбционной спектрофотометрии. Аллан [9] рекомендует проводить определение при 279,5, а не при 403 нм, так как в первом случае чувствительность выше. Трент и Славин [10] не заметили эффектов подавления или усиления при использовании следующей методики определения. Образцы породы разлагали сначала выпариванием со смесью серной и плавиковой кислот, затем сплавлением с содой (чтобы разложились силикаты), полученный в итоге солянокислый раствор вводили непосредственно в пламя. [c.306]

    Определение калия пламеннофотометрическим методом проводилось на фотометре на базе спектрографа ИСП-51 с фотоэлектрической приставкой ФЭП-1. Сущность данного метода заключается в том, что испытуемый раствор под действием струй сжатого воздуха распыляется и подается в пламя горел- [c.77]

    При определении калия используется излучение его резонансного дуплета 766,5 и 769,9 нм, расположенного на границе между видимой и инфракрасной частями спектра и имеющего потенциалы возбуждения 1,61 —1,62 эВ. В этом случае предпочтительнее использовать низкотемпературное пламя светильного газа и воздуха, в котором меньше сказываются помехи от излучения щелочноземельных металлов, что особенно важно при регистрации излучения пламенными фотометрами с интерференционными светофильтрами. Их фактор специфичности для калия обычно составляет несколько тысяч. Влияние других элементов на интенсивность излучения калия в сильной степени зависит от его концентрации и температуры пламени. В пламени светильного газа и воздуха ионизация калия незначительно проявляется лишь при его низких концентрациях около 1—2 мкг/мл. Поэтому область графика, где tg а > 1, невелика, но зато увеличивается протяжение части кривой, где а < 1. Присутствие 2—4 мкг/мл натрия в растворе, содержащем менее 2 мкг/мл калия, увеличивает интенсивность его излучения. При более высоких концентрациях калия в растворе влиянием легко ионизующихся приме- [c.250]

    Пламенный фотометр предназначен для определения содержания натрия, калия и кальция в почвенных и растительных вытяжках посредством фотометрических измерений пламени, в которое вводится мелкораспыленный исследуемый раствор. Известно, что атомы химических элементов, попадая в пламя, возбуждаются, в результате чего получается характерный для каждого элемента спектр излучения. Принцип действия прибора основан на прямой зависимости между концентрацией элемента в анализируемом растворе и интенсивностью его спектра. [c.59]


Таблица 18. "Факторы оеяектмвности" при определении калия и натрия на шшсенкок фотометре (пламя пропан - воздух) Таблица 18. "Факторы оеяектмвности" при <a href="/info/50172">определении калия</a> и натрия на шшсенкок фотометре (<a href="/info/420749">пламя пропан</a> - воздух)
    Одним ИЗ наиболее важных применений фотометрии пламени яв- ляется одновременное определение натрия и калия (а иногда и литмя) в биологических жидкостях, пищевых продуктах, удобрениях и т. д. Эти элементы возбуждаются значительно легче остальных, и их характери- стические линии эмиссионного излучения хорошо отделены друг от друга. Имеется несколько упрощенных приборов, предназначенных для выполнения этого анализа они используют газо-воздушное пламя и фотоэлементы с запирающим слоем. Некоторые приборы имеют указатели, шкалы которых непосредственно прокалиброваны в количеспзах определяемых элементов. [c.106]

    Фотометр пламенный лабораторный ФШ1-1 — фильтровый фотометр для количественного определения калия, натрия и кальция в растворах источником возбуждения спектров служит пламя горючей смеси пропан — бутан — воздух. Для выделения спектральных линий определяемых элементов испольг-зуют интерференционные светофильтры с максимумами светопоглощения (нм) для калия 785, кальция 622 и натрия 589. Мешающие излучения поглощаются адсорбционными светофильтрами. Продолжительность одного измерения около 30 с. В пламенном фотометре ФПЛ-1 фотоприемником является фотоэлемент Ф-9, а выходной сигнал фиксируется стрелочным амперметром М-266-М. Нижние пределы определеиия для калия и натрия 0,5 мкг/мл (или 5 10 %), а для кальция 5 мкг/мл (5 10" %). Определения вьтолняют по градуировочным графикам. [c.375]

    Применяются как фотометры со светофильтрами, так и спектрофотометры. Достигаемые при работе с ними значения чувствительности и факторов специфичности в общем свидетельствуют о значительных преимуществах спектрофотометров перед фотометрами со светофильтрами. При работе с фотометрами, снабженными интерференционными светофильтрами, факторы специфичности для определения кальция в присутствии натрия получаются от 10 до 600, а в присутствии калия —от 4 до 200. Фотометр на основе монохроматора УМ-2 (воздушно-ацетилено-вое пламя, щель 0,1 мм) при определении по линии 422,7 ммк дает значения факторов специфичности в присутствии натрия — 6000 и в присутствии калия — 5600. [c.239]

    Определения лантана в количестве 0,1—2% в сплавах и лигатурах на основе магния могут быть выполнены фотометрированием солянокислых растворов материалов, введенных в пламя смеси ацетилена с воздухом на установке, собранной на основе монохроматоров ЗРМ-3 или УМ-2. Установка снабжена механизмом для развертки спектров по максимумам молекулярных пиков лантана [743 и 794 нм ммк)] при ширине спектральной щели 0,2 мм. Записывают участок спектров 720—820 нм ммк). Возможно определение лантана с помощью фотометров пламени, снабженных интерференционными светофильтрами для определения калия. Калий в данном случае должен быть количественно отделен. Содержащиеся в магниевых сплавах алюминий и цирконий снижают интенсивность эмиссии лантана, образуя в пламени труднолетучие смешанные окислы. При введении в растворы для фотометрирования азотнокислого аммония в концентрации 150 мг1мл эмиссия лантана в присутствии циркония или алюминия практически не изменяется. Точность метода 0,05%, продолжительность анализов 30 мин. [c.323]

    Н. С. Полуэктовым с сотрудниками 01П1сан метод определения лития в рудах на пламенном фотометре с интегрирующим устройством [16]. При этом проба вводится в пламя путем испарения из таблетки, которая готовится смешением навески с хлористым аммонием и карбонатами кальция, калия и натрия. Метод применим для содержаний 0,005— 1 % Ы20. Доп. ред.)  [c.49]

    А. Соединения и минералы лития окрашивают пламя в красивый карминовый цвет. Реакция более чувствительна, если минерал смочить концентрированной соляной кислотой некоторые минералы необходимо предварительно сплавить с бисульфатом и бифторидом калия в петле платиновой проволоки. Окраску маскирует желтое пламя натрия, но она может быть различена через синий светофильтр или при помощи спектроскопа. Спектр лития имеет ярко-красную линию 6708 А между красной линией калия и линией натрия. Если эта линия интенсивна и постоянна, минерал, по-видимому, содержит значительное количество лития. Предел видимости меняется с условиями и у различных наблюдателей, но все же можно обнаружить 10 мг лития. Небольшая спираль из платиновой проволоки, погруженная в раствор, содержащий ир11мерно 2-10 5 мг в 1 мл, а затем по.мещенная в пламя бунзеновской горелки, дает мгновенное появление красной линии лития. Метод для определения таких малых количеств лития тот же, что и для определения в минеральных водах [3] он состоит в измерении степени разведения неизвестного раствора, при которой линия лития едва обнаруживается, и сравнении с разведением подобного раствора с известным содержанием лития. Однако весовой метод так прост, что для средних и относительно больших количеств лития он более нредпочтителеп по сравнению со спектроскопическим. Современная аппаратура для пламенной фотометрии позволяет достаточно просто и быстро определять литий по его красной линии 670,8 ммк при его содержании от сотых долей процента (см. разд. IV, Г). Доп. ред.)  [c.49]

    В. И. Лебедев [8] определял рубидий по линии 780,0 ммк в гранитах, гнейсах и сиенитах, используя метод уподоблеппя стандартного раствора исследуемому. Н. С. Полуэктовым с сотрудниками [13] описан метод определения цезия в рудах на иламенном фотометре с интегрирующим устройством. При этом элемент вводят в пламя путем испарения из таблетки, которая готовится сменшваннем пробы с карбонатом кальция, хлоридом а.м.мония и карбонатами натрия и калия. Р1еобходимое количество пробы — 40 мг. Могут быть определены содержания цезия [c.57]


Смотреть страницы где упоминается термин Калия ион, определение фотометрией пламени: [c.18]   
Основы аналитической химии Часть 2 (1979) -- [ c.2 , c.398 ]




ПОИСК





Смотрите так же термины и статьи:

Определение фотометрией пламени

Фотометрия

Фотометрия пламени

Фотометры



© 2025 chem21.info Реклама на сайте