Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Переходных металлов гидриды

    При этом атомарный (или ионный) водород, предварительно адсорбированный на катализаторе в непосредственной близости от реагирующей молекулы углеводорода, входит в состав переходного комплекса и далее, после перераспределения электронной плотности, регенерируется уже в молекулярном виде. Наличие поляризованного (и даже ионного) водорода на поверхности металлов в условиях реакции подтверждается работами различных авторов [129—131]. Так, после анализа экспериментальных данных, полученных при изучении адсорбции водорода на Pt, Ni и других металлах в условиях глубокого вакуума, сделан вывод [130] о существовании двух основных видов хемосорбции водорода слабой (обратимой) и прочной (необратимой). Слабо хемосорбированный водород находится, как правило, в молекулярной форме и несет при этом положительный заряд (М —Hj). При прочной хемосорбции водород диссоциирован и заряжен отрицательно (М+—Н-). При анализе состояния водорода в гидридах различных металлов [131] сделан вывод, что в гидридах большей части переходных металлов водород находится в двух формах Н+ и Н при этом форма (М+—Н ) является основной. [c.231]


    Однако это условие не может считаться достаточным для объяснения накопленных фактов. Например, металлы с sp-валентными электронами (РЬ, Sn и др.) не дают таких структур, какие характерны для переходных металлов. Затем, несмотря на то, что радиус, например, Та в объемно-центрированной кубической решетке достаточно велик по сравнению с радиусом атома С, чтобы последний мог войти в пустоты решетки тантала, углерод почти не растворяется в объемно-центрированной решетке тантала. Очевидно, устойчивость подобных веществ определяется более сложно, а не просто отношением радиусов атомов. Среди карбидов, нитридов, гидридов есть не только твердые растворы, но и химические соединения переменного состава. Например, по результатам работ Б. Ф. Ормонта и сотрудников тот же углерод с танталом образует различные химические соединения переменного состава. Одно из таких соединений имеет область гомогенности при составе, изменяющемся от ТаСо за до ТаС о,во- Решетка этой Р-фазы отлична от индивидуальных решеток углерода и тантала и представляет собой гексагональную решетку, состоящую из атомов Та, октаэдрические пустоты которой статистически заняты атомами С. Другая, так называемая -f-фаза, представляет собой химическое соединение изменяющегося состава в пределах области гомогенности от Ta o jg до ТаС. Кристаллическая решетка в этом случае состоит из атомов Та с элементарной ячейкой гранецентрированного куба, в октаэдрических пустотах которой находятся атомы С. Когда эти пустоты заполняются полностью атомами С, то решетка превращается в решетку типа Na l (ТаС). Такую же решетку имеет монокарбид титана Ti . В ней может изменяться состав в пределах области гомогенности до Ti g в-Твердость, температура плавления, термодинамические свойства, плотность, периоды решетки и другие свойства этих важнейших жаростойких материалов зависят от состава фаз и изменяются с изменением числа атомов С в решетке. [c.144]

    В табл. 33 приведены некоторые промышленные гетерогенно-каталитические процессы и катализаторы. В качестве катализаторов в различных реакциях применяются переходные металлы и металлы первой группы, оксиды и сульфиды, фосфорная кислота, нанесенная на носитель. В качестве гетерогенных катализаторов применяются также нанесенные на носитель нерастворимые соединения переходных металлов, например комплексные соединения металлфталоцианинов, комплексные гидриды металлов и др. [c.634]


    Эта методика может быть применена и в том случае, когда исходный комплекс инертен, но легче синтезируется. Метод синтеза комплексных соединений с нехарактерными степенями окисления центрального иона состоит в восстановлении комплекса амальгамами металлов, борогидридами, гидридами и т. д. Некоторые лиганды цианид, фосфины, СО — обладают явно выраженной способностью стабилизировать низшие степени окисления переходных металлов. Некоторые примеры применения этой методики приведены в табл. 9.2. [c.409]

    Восстановление системами соединение переходного металла — гидрид металла [c.257]

    Из тех данных, с которыми мы познакомились при характеристике типов связи, следует, что специфика химической связи является важнейшим фактором, определяющим физико-химические свойства веществ (см. 5.10). Так, комплекс свойств металлических тел глубоко взаимосвязан с металлической связью. Многие свойства сплавов и соединений металлов d- и /-элементов (гидридов, бори-дов, карбидов, нитридов, оксидов и др.) не могут рассматриваться без учета возможной у них доли металлической связи. Сравнительно легко отличить свойства соединений с преобладанием ковалентной или ионной связи. К соединениям ковалентного типа относятся углеводороды, разнообразные другие органические вещества, СиО,, P I3, P I5 и т. п. Значительная доля ковалентной связи содержится в молекулах галогенидов, оксидах и сульфидах переходных металлов. [c.124]

    Изомеризация под действием гидрокарбонилов и гидридов переходных металлов [c.111]

    Промежуточное взаимодействие одного из субстратов с катализатором может существенно понизить энергетический барьер реакции, устраняя запрет по орбитальной симметрии. Например, прямое взаимодействие молекул органических соединений с молекулярным водородом (гидрирование) запрещено по орбитальной симметрии точно так же, как реакция На с СЦ (см, с, 286), Однако На может взаимодействовать с переходными металлами, например с палладием, поскольку запрет не распространяется на взаимодействие с -орбиталями. Образующийся гидрид палладия без труда взаимодействует с органичен скими молекулами с освобождением металлического палладия. На этом основано широкое использование палладия как катализатора гидрирования, [c.309]

    Можно выделить три метода восстановления функциональных групп I) гидрирование молекулярным водородом с использованием гетерогенных или гомогенных катализаторов 2) гидрирование путем переноса водорода с использованием в качестве донора водорода органических соединений 3) селективное восстановление с применением комбинированных катализаторов типа переходный металл — гидрид металла. [c.250]

    Гидриды переходных металлов Гидриды металлов [c.22]

    Расстояния М—Н в гидридах переходных металлов близки к сумме ковалентных радиусов атомов. Для первого ряда переходных металлов они составляют 0,14—0,17 нм, тогда как ионный радиус гидрид-иона в системе Гольдшмидта 0,154 нм. [c.93]

    Атомы водорода в гидриде палладия, углерода в карбиде железа могут находиться в состоянии ионизации и при пропускании электрического тока перемещаются в направлении к катоду. Доля участия различных типов связи меняется в зависимости от степени заполнения дефектных оболочек переходных металлов. Не случайно, например, карбиды и нитриды ( -металлов с сильно дефектными оболочками (Т1Ы, НГМ, Т1С, УС, ЫЬС) характеризуются максимальными температурами плавления, высокой твердостью, химической инертностью, что указывает на значительную долю ковалентного взаимодействия в этих фазах. Металлизация атомов неметалла способствует увеличению электронной концентрации в матричной решетке переходного металла, деформированной в процессе внедрения, что приводит к заполнению вакантных состояний в й-зоие ме- [c.383]

    Нахождение электронов водорода в электронном газе соответствующей решетки металла дает основание говорить в таких случаях о металлическом типе связи водорода. Этот тип химической связи полностью реализуется лишь в гидридах переходных металлов VI—VHI групп. У переходных 1металлов V, IV и у некоторых металлов III групп происходит постепенный переход к солеобразным гидридам, которые типичны для непереходных металлов I и II групп. Основной причиной этого перехода от металлического к ионному ти- пу связи следует считать уменьшение электроотрицательности металлов при продвижении влево по периоду и, как следствие, оттягивание валентных электронов металлов к атому водорода. В то же время гидриды переходных металлов I и II групп, также как непереходных металлов III группы занимают промежуточное положение между солеобразными гидридами и летучими гидридами непереходных элементов V, VI и VII групп. В этом же направлении, начиная с типично металлических гидридов, наблюдается плавный переход и в типе связи — от металлической к атомной связи валентные электроны атома водорода во все большей степени оттягиваются к его партнеру по связи вследствие возрастания электроотрицательности последнего. Таким образом, оказьгаается, что у гомеополярных гидридов элементов главной подгруппы VII группы атом водорода поляризован положительно. [c.645]


    Металлорганические соединения переходных металлов легко, особенно при нагревании, разлагаются с образованием гидридов и алкенов  [c.87]

    Гидриды элементов побочных подгрупп (переходных металлов) отличаются тем, что состав их не соответствует обычно про- [c.123]

    Б. В. Некрасов предложил делить все гидриды на пять групп солеобразные, переходные, металлообразные, полимерные и. летучие. Не вызывает никаких сомнений тот факт, что в периодической системе переход от гидридов одного типа (ионных или солеобразных) к другому (летучие ковалентные соединения) совершается постепенно, причем по мере приближения к концу периодов состав гидридов переходных металлов утрачивает определенность, гидриды делаются похожими на сплавы переменного состава. Когда внутренняя электронная оболочка атома заполнена, казалось бы, имеются условия для образования гидридов, сходных с гидридами щелочных или щелочноземельных металлов. Однако возможность перехода внутренних электронов в валентную оболочку придает гидридам таких элементов, как медь и цинк, характер, промежуточный между типичными ионными и ковалентными соединениями, а гидриды серебра и золота делает сходными с гидридами переходных металлов. [c.289]

    К особенностям химического поведения водорода следует отнести способность к образованию гидридов различных типов, в которых возможно образование как протонных (например, (НР)х), так и гидридных водородных мостиковых связей в электронодефицитных соединениях (ВгНе). В некоторых комплексах переходных металлов атом водорода непосредственно связан с атомом металла. [c.460]

    Гидриды элементов побочных подгрупп (переходных металлов) отличаются прежде всего тем, что состав их не соответствует обычно проявляемой валентности этих элементов. Часто встречаются среди них гидриды переменного состава, образующие с элементарными метал- [c.61]

    Среди бинарных соединений, компоненты которых расположены по разные стороны от границы Цинтля, особое место занимают фазы внедрения. Они образуются в системах переходных металлов с углеродом, азотом, кислородом. Сюда же примыкают гидриды и некоторые бориды переходных металлов, хотя положение водорода в периодической системе неоднозначно, а бор расположен слева от границы Цинтля. Определяющим фактором при образовании фаз внедрения являются не индивидуальные химические особенности неметалла, а лишь соотношение атомных размеров (размерный фактор). Все фазы внедрения образуют плотноупаковапные структуры и обладают металлическими свойствами. [c.54]

    Роль РЗЭ в таких интерметаллидах сводится к изменению кристаллической структуры переходных металлов, таких как железо, кобальт, никель и др. Последние, как известно, не способны в сколько-нибудь значительной степени взаимодействовать с молекулярным водородом и образовывать гидриды (говорят о так называемом гидрид-ном пробеле в периодической системе [2]). Однако введение РЗЭ в решетку переходного металла делает ее менее прочной, более подвижной, растягивающейся и в связи с этим способной поглощать водород. [c.72]

    Гидриды переходных металлов по внешнему виду и некоторым свойствам подобны металлам. Характер химической связи в этих гидридах близок к металлической. Они также обладают восстановительными свойствами, но менее активны, чем ионные гидриды. Большинство из них с водой взаимодействует слабо. [c.256]

    Металлоподобные нитриды получают нагреванием металлов в атмосфере азота или аммиака. В качестве исходных веществ могут применяться оксиды, галогениды и гидриды переходных металлов  [c.268]

    Вместе с тем лишь немногие гидриды переходных металлов проявляют каталитическую активность при изомеризации олефинов. В работе [50] изучены каталитические свойства 17 гидридов, но только 5 из них проявили заметную каталитическую активность. Как и в случае карбонилов, гидриды приходится дополнительно активировать, повышая температуру. Большинство активных гидридов содержит легко отщепляемый лиганд. Например, НСоМгЬз и НКеСоЬз при незначительном повышении температуры теряют соответственно N2 и Ь и принадлежат поэтому к наиболее активным катализаторам изомеризации. Для понимания механизма изомеризации важно также, что разложение алкильных комплексов не сопровождается отрывом атома водорода от алкильной группы. [c.112]

    Катализаторы Циглера — Натта применяют для получения линейных и стереорегулярных полимеров полиэтилена, 1,4-цис-полибутадиена, 1,4-цисполиизопрена и других [245—247]. Катализаторы представляют собой продукты взаимодействия галоге-нидов, оксигалогенидов, ацетилацетонатов, алкоголятов, окисей и других соединений переходных металлов с металлалкилами, гидридами, амидами и другигйи соединениями металлов I— III группы периодической системы, называемых сокатализато-рами [245]. [c.178]

    Обычно фторолефины и фторацетилены внедряются в связь переходный металл — гидрид (стр. 118), но в случае трифторэтилена и (СНз)дЗпМп(СО)5 такого внедрения не происходит и образуется фторвинильное соединение с потерей фтора в виде (СНз)зЗпР [1]  [c.229]

    Для понимания процессов гидрирования металлов, так же как и других реакций газов с твердыми веществами, надо обратить внимание на характер взаимодействия образующихся соединений с основной массой твердого вещества. Когда образуются фазы переменного состава или твердые растворы, например, в системах переходный металл—гидрид, металл—окисел и др., реакция, как правило, протекает нормально. Если же образующиеся вещества нерастворимы в основном металле, как это имеет место для систем N313—Ка или МдНа—Мд, то вслед за образованием поверхностной пленки гидрида, окисла или др. реакция приостанавливается. В этих случаях приходится прибегать к средствам механической или химической активации. Это подтверждает ранее развитые представления о природе фаз переменного состава и их реакционной способности. [c.185]

    Внимание к каталитическим свойствам гидрокарбонилов и гидридов переходных металлов объясняется тем, что в молекулах этих соединений имеется ст-связь Ме—С и, кроме того, некоторые гидрокарбонилы, например НСо(СО)4, являются промежуточными продуктами гомогеннокаталитического гидроформилирования олефинов (оксосинтез). Так, показано [41, 45], что НСо(СО)4 при оксосйнтезе расходуется в стехиометрических количествах по реакции [c.111]

    Большая группа элементов (многие переходные металлы) образует гидриды с преимущественно металлическим характером связи. Все они являются фазами внедрения. Состав большинства металлоподобных гидридов отвечает формулам ЭН, ЭН2. Иногда встречаются и гидриды состава ЭН3. Соотношение элементов в формульных единицах не зависит от природы металла, правило формальной валентности здесь не соблюдается, а состав определяется общими закономерностями образования фаз внедрения. Водород способен внедряться не только в октаэдрические пустоты плотноупакованных структур, что отвечает составу АВ, но и в тетраэдрические (состав АВ2). Если же атомы водорода занимают и октаэдрические, и тетраэдрические пустоты, реализуется состав АВд. Поскольку в реальных условиях водород может занимать лишь часть пустот соответствующего типа, указанные составы являются предельными и возможно отклонение от них в сторону недостатка водорода. Поэтому все металлоподобные гидриды являются односторонними фазами переменного состава ЭН1-2 , ЭН2-1, ЭНз- . Переходные металлы 4-го периода с кайносимметричной 3rf-оболочкой, во-первых, растворяют водород, а во-вторых, образуют фазы внедрения. При этом первая четверка 3d-металлов (Ti — Мп, взаимодействие скандия с водородом не изучено) хорошо растворяет водород в твердом состоянии, но образуют лишь по одному гидриду. Металлы УП1В-группы (Fe, Со, Ni), напротив, плохо растворяют водород, но образуют по нескольку гидридов. Взаимодействие с водородом первых пяти элементов 5-го и б-го периодов подчиняется тем же закономерностям — образование ограниченных твердых растворов и гидридов. Исключением является молиб- [c.269]

    Все сказанное относилось к растворам замещения. Обычно карбиды, бориды, нитриды и гидриды имеют металлический характер, если образуются переходными металлами. Структура этих соединений в значительной степени определяется геометрическим фактором. Согласно правилу Хэгга, если отношение радиуса атома неметалла к радиусу атома металла меньше 0,59, то атомы металла образуют простую решетку (обычно гранецептрированный куб или плотную гексагональную, а в некоторых случаях объемноцентрирсзанную кубическую или простую гексаго- [c.651]

    Фазы внедрения находят в современной технике обширное применение благодаря их уникальным свойствам. Они обладают исключительно высокой тугоплавкостью (т.пл. Т1Н = 3200°С, т.пл. НГС = 3890°С, т.пл. ТаС = 3800°С) и жаропрочностью, а потому являются прекрасными конструкционными материалами, например в ракетной технике. Высокая твердость фаз внедрения позволяет использовать эти материалы в качестве абразивов, для изготовления быстрорежущего инструмента (сплавы типа победит ). Так, карбид вольфрама УСо,5 имеет твердость порядка 1500— 1700 кг/мм , а карбид титана Т1С — 2850—3000 кг/мм . Гидриды переходных металлов используются в качестве восстановителей, катализаторов, для создания покрытий из соответствующих металлов и получения металлов в порошкообразном состоянии (хрупкие гидриды легко растираются в порошок, а затем ари нагревании в вакууме разлагаются). Т1Н, Т1Нг, 2гНг, УНг и другие применяются в ядерной технике в качестве замедлителей нейтронов. Ряд фаз внедрения используется в качестве сверхпроводников (ЫЬС, Т1Н, МоС, NbN, А С), электродов, работающих при повышенных температурах, катализаторов (МоС5,о, УС, РеСо,5). [c.385]

    Переходные элементы не образуют газообразных водородных соединений в отличие от элементов IVA, VA, VIA, VIIA и от бора. Они также не образуют солеобразных водородных соединений, подобных гидридам щелочных и щелочноземельных металлов. Только лантан образует гидрид, который при максимальном содержании в нем водорода отвечает формуле LaH и приближается по свойствам к солеобразным гидридам. Гидриды переходных металлов обычно представляют собой металлообраз/ ые фазы переменного состава, большинсчво из которых — твердые растворы (гл. IV). [c.324]


Смотреть страницы где упоминается термин Переходных металлов гидриды: [c.258]    [c.120]    [c.146]    [c.296]    [c.297]    [c.179]    [c.102]    [c.65]    [c.231]    [c.507]    [c.178]    [c.149]    [c.141]   
Металлоорганическая химия переходных металлов Том 2 (1989) -- [ c.147 , c.152 ]




ПОИСК





Смотрите так же термины и статьи:

Гидриды металлов

Металлы гидридами металлов

Металлы переходные



© 2025 chem21.info Реклама на сайте