Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Молекула плотная упаковка

    В комплексе находится шесть молекул мочевины в гексагональной ячейке. Изучение чистых кристаллов мочевины показывает, что они принадлежат к тетрагональной системе и имеют плотную упаковку без каких бы то ни было каналов или свободного пространства, в котором могли бы быть заключены другие молекулы. Таким образом, в процессе комплексообразования наблюдается изменение кристаллической структуры с тетрагональной на гексагональную. [c.214]


    При определенной концентрации эмульгатора, соответствующей достижению плотной упаковки молекул ПАВ в адсорбционном слое и минимальному поверхностному натяжению на границе раздела фаз, в объеме начинается и заканчивается формирование мицелл, представляющих собой частицы коллоидной (мицелляр-ной) фазы [21, 22]. Такая концентрация называется критической концентрацией мицеллообразования (ККМ). [c.144]

    Расчеты показывают, что обмен молекулами между жидкостью и ее насыщенным паром происходит исключительно интенсивно на каждом квадратном сантиметре поверхности ежесекундно концентрируется около 8,5-10 молекул. Если учесть, что на аналогичной площади воды даже при самой плотной упаковке не может разместиться более 101 молекул, то из этого следует, что длительность пребывания одной молекулы на поверхности не превышает 1,25-10- с. Такой стремительный обмен молекулами между жидкостью и паром должен сопровождаться подобным же обменом между объемом жидкости и ее поверхностным слоем. А это означает, что в поверхностном слое движение молекул чрезвычайно интенсивно. [c.187]

    Структура воды. Как уже указывалось, молекулы Н2О в кристаллической решетке льда связаны друг с другом водородными связями. Кристаллическая структура льда весьма далека от плотнейшей упаковки. При плотнейшей упаковке молекул Н2О лед имел бы плотность 2,0 г/см , тогда как в действительности плотность льда равна 0,9 г/см  [c.156]

    В табл. 72 приведены равновесные концентрации, соответствующие максимумам изотерм адсорбции, а также предельное содержание адсорбированного октена-1 в цеолитах. При предельном заполнении полостей цеолита СаА в каждой полости находится примерно три молекулы октена-1, что свидетельствует об их плотной упаковке и сильном взаимодействии с поверхностью цеолита. [c.197]

    У неблагородных металлов, где вслед за адсорбцией происходит также и разрыв молекулы кислорода, механизм образования окисной пленки сложнее, однако и здесь вследствие достаточно больших размеров атомного кислородного иона правильная ориентировка кислородных слоев с плотнейшей упаковкой параллельно поверхности металла должна сохраняться. [c.44]

    Различие молекулярного строения обусловливает разную способность углеводородов к плотной упаковке при кристаллизации и связанные с этим особенности изменения структуры в твердом растворе, а следовательно, и свойств. На рис. 31 и 32 приведены температурные зависимости ИК-спектров и показателей преломления, типичные для твердых углеводородов, образующих и не образующих карбамидные комплексы, т. е. различающихся по структуре молекул компонентов, входящих в их состав. Превращения в смесях комплексообразующих углеводородов характеризуются наличием двух фаз в интервале перехода расплава и вы- [c.124]


    Лед может существовать в нескольких кристаллических модификациях. Описанная здесь форма носит название лед I. При невысоких давлениях она является наиболее устойчивой. Но при высоких давлениях, начиная с 2000 атм, более устойчивыми могут быть другие кристаллические формы льда. В настоящее время известно несколько таких форм. На рис, 83 схематически представлена диаграмма состояния воды в области давлений до 13 000 атм. По крайней мере в двух формах (лед П-и лед III), как показывают результаты рентгеноструктурного анализа их, каждая из молекул воды тоже связана с четырьмя другими. Плотности всех форм льда от II до VII выше, чем льда I (и выше, чем жидкой воды), так как за счет действия повышенного давления (т. е. с затратой энергии извне) в них осуществляется искажение валентных углов и достигается более плотная упаковка молекул. Интересно отметить, что одна из форм льда (лед VII) почти в полтора раза тяжелее, чем лед I. Лед VII образуется при давлении около 21 700 атм и более высоких. При 21 680 атм он находится в, равновесии с жидкой водой при температуре -1-81,6° С (теплота плавления его в этих условиях равна 526 ккал/моль), а при давлении 32 ООО атм лед плавится лишь при +192° С. [c.250]

    Для химич( Ской кинетики достаточно точно можно оценить величину сечен)1я соударений, считая, что в жидкости или в твердом теле происходит плотная упаковка молекул. Объем, занимаемый 1 моль (молярный объем), равен M/d, где d — плотность вещества, г м . При плотной упаковке шарик радиусом т занимает объем 8г /]/2. Следовательно, [c.369]

    На основе исследования люминесценции растворов асфальтенов установлено, что асфальтеновые ассоциаты имеют плоское строение [289]. Об этом же свидетельствуют хорошо сформированные пластины со средним поперечным размером до 1 ч- 3 мкм, обнаруженные методом электронной микроскопии. Плотная упаковка надмолекулярных структур асфальтенов проявляется в том, что растворы асфальтенов ведут себя аналогично компактным ассоциированным полимерам, причем они имеют меньший молекулярный объем, чем молекулы полимера с той же молекулярной массой [242]. [c.288]

    Рассмотрим факторы, определяющие стабильность эмульсий, исходя из обеих предпосылок. Чтобы не подпустить капли на расстояние, при котором происходит коалесценция, молекулы илн частицы стабилизатора должны иметь определенное строение, а также прочно и с плотной упаковкой располагаться на поверхности. При этом устойчивость эмульсий обусловливается тремя факторами [Ц  [c.416]

    С достаточной для целей химической кинетики точностью можно оценить величину од,в, считая, что в жидкости или в твердом теле имеет место плотная упаковка молекул. Объем, занимаемый одним молем (молярный объем), равен М/р, где р — плотность вещества, г/см . В то же время, как известно из геометрии, на один шарик радиуса г (в нашем случае на одну молекулу) при плотной упаковке приходится объем 2. Следовательно, [c.78]

    При сжатии газовой пленки наблюдается переход к жидкой пленке (двумерная конденсация). Конденсированные пленки наиболее распространены. В них, как уже указано, имеется плотная упаковка цепей и ориентация к поверхности под углами около 26,5° (из-за зигзагов цепей). Занимаемые молекулами площади зависят от размеров концевых групп. Особое место занимают растянутые пленки , получаемые при сниженном давлении. Такие пленки несколько расширены и состоят из молекул, адсорбированных своей [c.100]

    Авторы работы [210] изучали адсорбцию цеолитом СаА н-гептана. Рассматривая некоторые возможные варианты расположения молекул н-гептана в полости цеолита, авторы указывают, что возможны положения, когда на одну полость цеолита приходится 2-3 недеформированные молекулы н-гептана. Но термодинамически возможно образование поворотных изомеров н-гептана. Скручивание линейных молекул н-гептана способствует более плотной упаковке молекул в полости тогда в последней могут расположиться 3-4 молекулы адсорбтива. Однако даже в этом случае неизбежно остаются еще значительные пустоты между молекулами, находящимися в полостях цеолита в поле адсорбционных и межмолекулярных сил. [c.285]

    Дж. Бернал и Р. Фаулер, приняв эффективный радиус молекулы Н2О равным 1,4 A, рассчитали кривые интенсивности рассеяния рентгеновского излучения для трех типов распределения молекул плотнейшей упаковки, структуры кварца и льда-тридимита. Сопоставляя рас-счетные кривые с экспериментальной кривой интенсивности, они пришли к выводу, что в воде существуют три различные координации молекул вода I с тетраэдрической структурой типа льда-тридимита (ниже 4°С) вода II, обладающая кварцеподобной структурой (выше 4°С), и вода III с плотно упакованным размещением молекул (преобладающая при высокой температуре). С изменением температуры эти формы непрерывно переходят друг в друга. [c.228]

    В этой связи рассмотрим упаковку концевых (метильных) групп цепочечных молекул. Как уже говорилось, расположение концевых групп относительно оси цепочки определяет геометрию четных и нечетных молекул и, соответственно, симметрию создаваемых ими плотнейших упаковок. Эффект влияния концевых групп иллюстрируется рис. 5, заимствованным из работы М. Г. Бродхарста [187]. Видно, что если цепочки из метиленовых групп СНз расположить вертикально, то упаковка юэнцевых групп окажется одинаково плотной как для четных (рис. 5, а), так и для нечетных (рис. 5, б) молекул. Если же цепочки расположить наклонно, то плотнейшая упаковка может выполняться лишь в случае четных цепочечных молекул (рис. 5, в). В случае нечетных молекул плотная упаковка не достигается (рис. 5, г). [c.22]


    Так, однако, дело обстоит лишь в неискаженном образце. Стоит путем внешнего воздействия, например механического, исказить, скажем, изогнуть его, как молекулы начнут выстраиваться, и распределение направлений дипольных моментов отдельных молекул вдоль директора для грушеподобных молекул и поперек директора для банановидных будет неравновероятным. Это означает, что возникает преимущественное направление ориентации дипольных моментов отдельных молекул и, как следствие, появляется макроскопический дипольный момент в объеме жидкого кристалла. Причиной такого выстраивания являются стерические факторы, т. е. факторы, обеспечивающие плотнейшую упаковку молекул. Плотнейшей упаковке молекул именно и соответствует [c.34]

    В процессе старения битумов визуально наблюдали его усадку, которая со временем увеличивалась. Рост усадки происходат не только в результате процессов уплотнения, приводящих к более плотной упаковке молекул битума, но и в процессе образования пор, которые сужаются при испарении влаги под действием капилляршх сил или расширяются при замерзании влаги, имеющейся в порах, приводя к дополнительному сжатию массы. [c.64]

    Согласно адсорбционной теории наступление пассивного состояния не обязательно связано с образованием полимолекулярной сксндной пленки. Оно может быть достигнуто также за счет торможения процесса растворения, вызванного адсорбированными атомами кислорода. Появление кислородных атомов на поверхности металла в результате разряда ионов 0Н (или молекул воды) может происходить при потенциалах более низких, чем те, при которых выделяется кислород или образуются оксиды. Адсорбированные атомы кислорода пассивируют металл, или создавая на его поверхности сплошной мономолекулярный слой, или блокируя наиболее активные участки поверхности, или, наконец, изменяя эффективную величину скачка потенциала на границе металл — раствор. Представление о сплошном мономоле1сулярном слое кислородных атомов как о причине пассивности металлов не дает ничего принципиально нового по сравнению с пленочной теорией пассивности, тем более, что такой слой трудно отллчить от поверхностного оксида. По количеству кислорода мономолекулярный слой его адсорбированных атомов (или молекул) при плотной упаковке эквивалентен двум — четырем молекулярным слоям, составленным из поверхностного оксида. [c.483]

    Заметим, что в определении соударения имеется ряд произвольных допущений, которые касаются, в частности, сил взаимодействия частиц АиВ. Часть из этих допущений заключена в принятой нами модели строения растворов. Так, если принять квазикристаллическую модель строения жидкости, то ближайшие соседние частицы будут расположены друг от друга на расстояниях, соответствующих такой кристаллической решетке. Для гексагональной плотной упаковки сферических молекул ближайшие частицы будут расположены на расстоянии г ав ДРУГ от друга, следующие соседние частицы — па расстоянии 7 дв (8/3) 2 1,7гдв. Если принять кристаллическую модель, то вероятность существования в растворе пар А — Вс расстоянием между А и В в интервале от гдв до 1,7гдв очень мала. [c.425]

    При плавлении льда разрушается лишь часть гюдороднык связей. Поэтому при температурах, близких к О °С, и(ндкая вода содержит как остатки структуры льда, так й оторвавшиеся от них отдельные молекулы, Последние могут размещаться в пустотах ледяных агрегатов, в результате чего достигается более плотная упаковка молекул. Именно поэтому при плаплении объем воды уменьшается, а ее плотность возрастает. [c.208]

    Все. молекулы приближенно преллолагаются сферически%<и тогла при наиболее плотной упаковке они ДОЛЖНЫ 1анимать объема пространства. Если Л/—. молекулярная. масса. Л —число Авогадро и [c.154]

    Понятие о координационном чнсле применяют не только ири рассмотрении окружения атомов в кристаллах, но и в свободных молекулах (в газах) и в многоатомных ионах, существующих в растворах. Для большинства металлов в кристаллах к. ч. равно 12, что соответствует наиболее плотной упаковке. Радиусы атомов и ионов зависят от к. ч. Значение радиуса Га или ri при другом к.ч. можно найти умножением г при данном к.ч. на определенный коэффициент. Так, при уменьшении к.ч. от 12 до 8,6 и 4 Га, отвечающий к.ч. = 12, нужно умножить соответственно на 0,97 0,96 и [c.51]

    Галогениды. иРв — т. пл. 64 °С (под давлением), возг. при 57 °С, молекула— искаженный окт., (0—Р) == 198 пм иС1в — темно-зеленый, т. пл. 177°С, реш. представляет собой искаженную гексагональную плотнейшую упаковку атомов С1, в окг. пустотах которой находятся атомы и, ё( ]—С1) = 241—251 пм. [c.611]

    С достаточной точностью можно оценить величину сечения соударения F жидкости или в твердрм теле, если существует плотная упаковка. молекул. Объем, занимаемый одним молем (молярный объем), равен /-i/d. На один шарик радиусом г при плотной упаковке приходится (бьем 8г /]/2, следовательно, [c.372]

    Гибкие макромолекулы линейных полимеров с высокой прочностью вдоль цепи и слабыми межмолекулярными связями обеспечивают эластичность материала. Шогие такие полимеры растворяются в растворителях, Иа физико-механические и химические свойства линейного полимера влияет плотность упаковки молекул в единице объема. При плотной упаковке возникает более сильное мемыолекулярное притяжение, что приводит к повышении плотности, прочности, температуры размягчения и уменьшению растворимости. Линейные полимеры являются наиболее подходящими для- получения волокон и пленок (например, полиэтилен, полиамлды и др.). [c.21]

    Ароматические углеводороды имеют более высокие температуры кипения, чем соответствующие циклопарафиновые углеводороды, Это объясняется более плотной упаковкой молекул ароматических углеводородов (плоское кольцо), а также более сильным физикохимическим взаимодействием между молекулами (наличие я-элек-тронов) (исключение составляет бензол и циклогексан, имеющие близкие свойства). [c.71]

    Сравнивая же характер изменения 5тш и высоту максимума на кривой деэмульгирования (О) от длины ОЭ-цепи, можно сделать вывод, что оптимум деэмульгирующего действия исследуемых полигликолевых эфиров алкилфенолов зависит от степени насыщенности в адсорбционном слое гидрофобных групп молекул эфиров. Действительно, чем плотнее упаковка> гидрофобных групп, т. е. чем ближе 5тт у эфиров алкилфенолов приближается к поперечному сечению углеводородной цепи при ее вертикальной ориентации, тем выше максимум на кривой деэмульгировання и шире диапазон оптимальных концентраций, при которых происходит разрушение эмульсии В/М, и, наоборот, с увеличением значения 5т1п, т. е. с увеличением разреженности гидрофобных групп в адсорбционном слое снижается максимум на кривой деэмульгирования и суживается интервал оптимальных концентраций. [c.145]

    Различия в Wq для стабилизированного и активированного цеолитов составили 20-30 % отн. при опреледении по н- g и 6-II % отн. по Видимо, более плотная упаковка молекул гексана в полос- [c.29]

    Моноалкилзамещенные тиациклопентаны СпНап5 интересны в том отношении, что во всем этом гомологическом ряду соотношение углерода и водорода остается постоянным, а основное влияние на величину плотности оказывает длина цепи алкильного заместителя, процентное содержание серы и наличие циклизации, причем влияние последнего фактора, способствующего более плотной упаковке молекул в жидкости, по-видимому, является доминирующим, чем и объясняется значительно более высокая плотность циклических сульфидов по сравнению с алифатическими. С ростом молекулярного веса уменьшается процентное содержание серы, влияние цикла начинает подавляться нарастающим действием бокового алифатического радикала — ив целом все это приводит к уменьшению плотности моноциклических сульфидов. [c.153]

    Причини, по которым данное соединение является хорошим ингибитором для железа и плохим для цинка или наоборот, могут быть связаны также со специфическим электронным взаимодействием полярных групп с металлом (хемосорбцией). Последний фактор в определенных случаях более важен, чем стерический, определяющий возможности для плотнейшей упаковки адсорбированных молекул. Это можно проиллюстрировать очень значительным ингибирующим действием оксида углерода СО, растворенного в соляной кислоте, на коррозию в ней нержавеющей стали [36] (степень защиты 99,8%, в 6,3 М растворе НС1 при 25 °С). Об этом же свидетельствует защита железа, обеспечиваемая малым количеством иодида в разбавленных растворах Н2504 [35, 37, 38]. Как СО, так и иодид хемосорбируются на поверхности металла, препятствуя в основном протеканию анодной реакции [39]. Кеше [40] показал, что 10" т К1 значительно лучше ингибирует железо в 0,5 т растворе N32804 с pH = 1 (степень защиты 89 %), чем в растворе с pH = 2,5 (степень защиты 17 %). Это показывает, что адсорбция иодида в этом интервале pH зависит от значения pH [c.270]

    Для цепи с Сю величина Яд 10 дин1см, а для цепи с С22 — приблизительно 22 дин1см. Конфигурация молекул с ненасыщенными углеводородными цепями препятствует плотной упаковке и уменьшает долю Лд. При увеличении площадей или при высоких температурах жидкорастянутые пленки превращаются в газообразные. [c.187]

    Кристаллы аргона и других инертных газов являются молекулярными с высокими координационными числами (плотной упаковкой молекул в кристалле). Так, аргон имеет кубическую гра-иецентрированную кристаллическую реп1етку (см, рис. 50, а). [c.181]

    Молекулярное строение кристаллизующихся углеводородов обуславливает различную способность их к плотной упаковке при кристаллизации и образованию твердых растворов различной структуры. Исследования структуры кристаллов, образующихся при кристаллизации углеводородов разных гомологических рядов, показали /27/, что при кристаллизации из растворов нефтяных фракций все они образуют кристаллы орторомбиче-ской формы со ступенчатой слоистостью кристаллов, т.е. каждый новый слой кристаллизуется на предыдущем, образуя пирамиду из параллельных ромбических плоскостей. Наибольшие размеры и число ромбических плоскостей имеют кристаллы нормальных алканов. Наличие нафтеновых и особенно ароматических структур в составе молекул кристаллизующегося вещества приводит к уменьшению размеров и слоистости образующихся кристаллов. При совместной кристаллизации углеводородов различных гомологических рядов повторяются эти же закономерности образуются смешанные кристаллы переменного состава орторомбической структуры, при этом чем больше циклических углеводородов, тем меньше размеры кристаллов и число наслоений. Способность циклических углеводородов (циклоалканов и аренов) образовать смешанные кристаллы с алканами обусловливается наличием в их молекулах длинных алкильных цепей в основном нормального строения. При отсутствии таких цепей циклические углеводороды кристаллизуются при значительно более низких температурах. [c.27]

    В условиях практики модифицировать поверхности материалов могут также присутствующие в нефтях естественные ПАВ смолы, асфальтены, нефтяные кислоты и др. При адсорбции нефтяных ПАВ с достаточно плотной упаковкой молекул полярные подложки могут преобразоваться в неполярные с относительно низким уровнем свободной поверхносиюй энергии. Возможность такой инверсии экспериментально была подтверждена в работе /30/, в которой было показано, что нефтяные ПАВ по-разному модифицируют поверхности различной природы /30/ они существенно меняют свойства гидрофильных поверхностей, снижая их гидрофильность, и практически не сказываются на гидрофобных поверхностях. Так, значе- [c.100]

    Молекулярные твердые соединения построены из молекул, соединенных друг с другом лишь ван-дер-ваальсовыми силами, включая в определенных случаях водородные связи, и состав этих веществ есть сумма составов всех молекул, вошедших в его структуру. Они образуют молекулярные кристаллы, структурными единицами которых служат молекулы. Молекулярные твердые соединения образуются в результате отвердевания, т.е. фазового превращения вещества, когда имеет место лишь межмолекулярное взаимодействие и не происходит разрыв существующих или образование новых химических связей. При образовании молекулярных кристаллов в условиях низких температур, исключающих межатомные взаимодействия, молекулы без сколько-нибудь существенных изменений входят в кристаллическую структуру, образуя настолько плотную упаковку, насколько позволяет конфигурация. молекул /69/. [c.107]

    Липатов и Фабуляк [112] отмечают важность процессов низкотемпературной релаксации, связанных с движениями боковых цепей. В образцах с большим отношением поверхности к объему эти релаксационные процессы смещены в сторону более низких температур. Такое поведение объяснялось менее плотной упаковкой сегментов на поверхности и, следовательно, более свободными движениями молекул. Утверждается, что это облегчает образование трещин серебра. Смещение процессов молекулярной релаксации в сторону более низких температур (в ПК) также наблюдал Сикка [163], который предположил, что это смещение может быть вызвано образованием микропустот. [c.375]

    Существование нескомпенсированного силового поля на границе раздела фаз приводит к перемещению молекул в этом поле, а следовательно, и изменению концентраций веществ в тонком поверхностном слое, разделяющем соседние фазы (сорбция). Количество сорбируемого вещества возрастает с ростом концентрации его в растворе, однако до известного предела, который отвечает плотнейшей упаковке сорбированных веществ в поверхностном слое. Частицы дисперсной фазы притягивают компоненты дисперсионной среды, концентрируют их на своей поверхности, за счет чего изменяется свободная энергия системы. [c.38]


Смотреть страницы где упоминается термин Молекула плотная упаковка: [c.102]    [c.424]    [c.425]    [c.66]    [c.472]    [c.134]    [c.153]    [c.80]    [c.50]    [c.100]    [c.90]    [c.63]    [c.27]   
Химический энциклопедический словарь (1983) -- [ c.449 ]

Большой энциклопедический словарь Химия изд.2 (1998) -- [ c.449 ]




ПОИСК





Смотрите так же термины и статьи:

Упаковки плотные плотнейшие



© 2025 chem21.info Реклама на сайте