Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Жидкости ближний порядок расположения молекул

    В жидком агрегатном состоянии, характеризующемся соизмеримостью энергии межмолекулярного взаимодействия и теплового движения молекул, наблюдается значительная плотность упаковки молекул, близкая к плотности упаковки молекул в твердых веществах, высокое сопротивление объемному сжатию и способность сохранять свою форму при определенных условиях, как, например, в условиях невесомости или при высокой дисперсности (каили тумана) и др. Жидкости легко принимают форму сосуда, в который их помещают. В пих наблюдается только ближний порядок расположения молекул. [c.72]


    Ранее считалось, что молекулы в жидкости расположены беспорядочно по-отношению друг к другу. Однако рентгенографические исследования показали,, что в весьма малых областях жидкости имеется определенный порядок расположения молекул. Принято считать, что структура жидкости характеризуется ближним порядком в отличие от кристаллов, которым свойственен дальний порядок. При этом следует учитывать, что области с квазикристаллическим порядком в жидкости во времени не постоянны, — возникнув в одном месте и просуществовав очень недолго, они распадаются и образуются в другом месте. [c.55]

    Таким образом, особенность структуры жидкости состоит в том, что отсутствует дальний, но присутствует ближний порядок расположения частиц. Проявление ближнего порядка заключается в том, что молекулы, расположенные в первой сфере окружения данной молекулы, в большей мере задерживаются около нее и, таким образом, определяют некоторую упорядоченность. [c.164]

    Принимается, что дальнодействующих сил нет и, следовательно, можно ограничиться учетом взаимодействия между молекулами, расположенными в непосредственной близости друг от друга. Среднее состояние каждой молекулы считается зависящим только от состояния ближайших ее соседей. Тем самым в известной мере снимается необходимость учета различий в распределениях молекул, удаленных друг от друга. Отличия кристалла (дальний порядок) от жидкости (ближний порядок) в этой модели сравнительно несущественны. [c.317]

    На рис. 1.2 приведен результат такой обработки. Резул >-таты математического эксперимента (кривая 1) для различных значений чисел контактов Мк = Ъ 6 7 8 9 10 и 11 дают наиболее вероятное и среднее значение Л7к = 8 оно оказывается таким же, как и для регулярной ромбоэдрической укладки с е = 0,395. По-видимому, аналогично тому, как в реальной жидкости имеется так называемый ближний порядок в расположении соседних молекул, так и в нерегулярно насыпанном [c.9]

    Жидкие и твердые вещества характеризуются определенной аморфной или кристаллической решеткой. Аморфная решетка характеризуется наличием близкого порядка в расположении атомов, ионов или молекул, а кристаллическая — близкого и дальнего порядка. Ближний порядок определяется тем, что в пределах радиуса ионов, атомов или молекул образуется устойчивая (для твердого тела) и малоустойчивая (жидкости), среднестатистического состава и строения пространственная фигура. В этой пространственной фигуре можно выделить центральную частицу (атом, ион, молекулу) и частицы из окружения, которые называют лигандами (ионы, атомы или молекулы). [c.248]


    Жидкости и жидкие растворы обладают элементами кристаллической структуры они имеют промежуточную структуру между газом и твердым веществом. В жидкостях сохраняется так называемый ближний порядок в расположении молекул, который имеет статистический характер. Молекулы в жидкости, как и в газе, находятся в хаотическом тепловом движении. Каждая молекула окружена другими молекулами, находящимися в среднем во времени, на некоторых преимущественных расстояниях от нее. Для более удаленных молекул эти преимущественные расстояния постепенно исчезают. [c.203]

    Подобно твердому телу жидкость обладает определенной структурой. Например, структура жидкой воды напоминает структуру льда. Молекулы НаО также соединены друг с другом посредством водородных связей, и для большинства молекул сохраняется тетраэдрическое окружение. Однако в отличие от льда в жидкой воде проявляется лишь ближний порядок — за счет изгиба и растяжения водородных связей относительное расположение тетраэдрических комплексов оказывается неупорядоченным. Кроме того, вследствие перемещения молекул часть водородных связей разрывается и состав комплексов постоянно меняется. Непрерывное перемещение частиц определяет сильно выраженную самодиффузию жидкости и ее текучесть. [c.151]

    Следует отметить, что дальний и ближний порядок существует не только во взаимном расположении молекул или атомов, но и в ориентации их. По этому признаку отличают координационный порядок от ориентационного порядка, характерного для некоторых жидкостей и твердых тел. [c.11]

    Правильное расположение частиц в идеальном кристалле сохраняется во всей кристаллической решетке - в кристаллах существует дальний порядок. В жидкости упорядоченное расположение частиц в какой-то мере сохраняется только в ближайшем окружении рассматриваемой молекулы, т, е. для жидкостей характерен ближний порядок (более или менее нарушенный). В том случае, когда кристаллизация требует значительной переупаковки частиц, ее достижение затруднено. Это обусловливает возможность переохлаждения жидкости, т. е. охлаждения ее до температуры ниже температуры плавления. [c.167]

    В отличие от кристаллов, в жидкостях при практически той же средней плотности распределения вещества дальний порядок отсутствует. Есть только ближний порядок, т. е. правильность расположения молекул или атомов в непосредственной близости от данной центральной молекулы, резко нарушающаяся с расстоянием. Такой ближний порядок, как и дальний порядок в кристаллах, может быть количественно изучен с помощью современных методов структурного анализа — по дифракции рентгеновских лучей или электронных пучков с длиной волны, соизмеримой с межмолекулярными расстояниями. [c.171]

    Первая, являясь скалярной величиной, представляет собой количество энергии, требующееся для получения единицы новой поверхности. Поверхностное натяжение численно равно силе, необходимой для образования единицы площади поверхности. Обе эти величины равны друг другу для жидкости, но не равны для твердого тела. Причина такого различия состоит в том, что в жидкости упорядоченность расположения может иметь лишь ближний порядок, поэтому, когда жидкость подвергается действию усилий сдвига, напряжения, возникающие в ней, снимаются местной перегруппировкой атомов или молекул. С другой стороны, так как сила, вызывающая сдвиг, уменьшается при снижении скорости деформации, в пределе она равна нулю. [c.262]

    В понимании особенностей жидкого состояния важнейшую роль сыграли начатые в 30-е гг. нашего столетия исследования рассеяния рентгеновских лучей жидкостями. Эти исследования показали, что в жидкостях расположение молекул в ближайшем окружении некоторой данной напоминает расположение их в кристалле. Имеется ближний порядок, хотя и не столь строгий, как в кристалле. Дальний же порядок, связанный с регулярностью структуры, в жидкостях отсутствует. Количественной характеристикой ближней упорядоченности является так называемая радиальная функция распределения. [c.198]

    Ближний порядок, т. е. способ расположения молекул в жидкостях, вблизи температуры плавления больше напоминает расположение частиц в решетке кристалла, чем в сильно сжатом газе. Это подтверждают прямые методы исследования структуры (рассеяние рентгеновских лучей в жидкостях и кристаллах) и косвенные данные. Например, для кристаллов и жидкостей вбли-9 — Полторак О. М. 257 [c.257]

    Жидкость — система динамическая. Атомы или молекулы, сохраняя ближний порядок во взаимном расположении, участвуют в тепловом движении, которое сложнее, чем в кристалле. Атомы и молекулы жидкости совершают колебания, как в кристаллах, но положения равновесия, относительно которых происходят эти колебания, не остаются фиксированными. Совершив некоторое число колебаний около одного положения равновесия, молекулы перемещаются в соседнее положение, обусловливая явление диффузии. [c.8]


    Методами рентгеновского структурного анализа доказано, что в жидкостях есть некоторая упорядоченность пространственного расположения молекул в отдельных микрообъемах. Вблизи каждой молекулы жидкости наблюдается закономерное расположение других молекул — так называемый ближний порядок. При удалении от нее на некоторое расстояние эта закономерность нарушается. Во всем же объеме жидкости порядка в расположении частиц нет. [c.18]

    Все твердые тела делят на кристаллические н аморфные. В кристаллических телах атомы, молекулы или ионы расположены в определенном, характерном для каждого вещества порядке, и этот порядок распространяется на весь объем (так называемый дальний порядок). В аморфных телах упорядоченное расположение частиц распространяется, так же как и в жидкостях, только на соседние частицы (ближний порядок). Во всем же объеме аморфного тела порядка в расположении частиц нет. В этом отношении аморфные тела можно рассматривать как жидкости с аномально большой вязкостью. [c.29]

    При больших значениях сил внутреннего трения нз сложных структурных единиц или надмолекулярных структур, находящихся во взвешенном состоянии, формируются пространственные внутренние сетки (ячейки), в которых в иммобилизованном виде находится неструктурированная жидкость. На рис. 2 схематично показана ассоциация частиц при гелеобразовании и коагуляции. При гелеобразовании жидкая нефтяная система приобретает твердое (аморфное) состояние без фазового перехода, так как порядок дальнодействия между молекулами и структурными единицами при этом не изменяется. Такие системы имеют ближний порядок, при котором расположение каждой молекулы в надмолекулярной структуре и сложных структурных единиц в системе определяется положением соседей н не зависит от положения структурных единиц на дальних расстояниях. Система теряет подвижность образуется гель), но не расслаивается или расслаивается медленно, хотя термодинамически и неустойчива (см. рис. 2, г). [c.34]

    В отличие от кристалла в жидкости и в аморфном твердом теле дальний порядок в расположении молекул отсутствует. Тем не менее наличие ближнего порядка и статистическое распределение различных конфигураций ядер с ближним порядком приводят к похожему уширению уровней и образованию зон, хотя структура их выражена гораздо менее определенно, чем в случае упорядоченных систем. Следует отметить, что в реальных кристаллах наличие различного рода дефектов решетки и примесей также может оказывать значительное влияние на идеальную зонную структуру. [c.482]

    Термин структура жидкости весьма распространен. В отличие от кристаллической структуры твердого тела под структурой жидкости следует понимать статистическую закономерность межмолекулярных расстояний и ориентаций, характерную для любой плотноупакованной системы. Благодаря конечному размеру молекул силам межмолекулярного взаимодействия любой жидкости свойствен ближний порядок в расположении частиц и отсутствие дальнего порядка. Отсутствие дальнего порядка означает, что порядок в одном месте никак не действует на порядок в другом. [c.98]

    Для жидкого агрегатного состояния характерны изотропия — одинаковость физических свойств по всем направлениям и текучесть — способность легко изменять внешнюю форму под воздействием малых нагрузок По высокой плотности и малой сжимаемости жидкости близки к твердым телам В жидкостях существует ближний порядок в расположении молекул, который проявляется в том, что число соседних молекул у каждой молекулы, а также их взаимное расположение в среднем для всех молекул в объеме жидкости одинаково У жидкостей сильно выражена самодиффузия, т е непрерывные переходы молекул с места на место [c.88]

    Стеклообразное состояние аморфного полимера сравнивают обычно с состоянием переохлажденной жидкости, высокая вязкость которой исключает ее свободное течение и обеспечивает устойчивость формы, что свойственно как внешний признак твердому телу. Стеклообразное состояние у низкомолекулярных веществ означает потерю подвижности всех молекул. Стеклообразное состояние у полимеров наблюдается тогда, когда их макромолекулы лишены подвижности. Этого можно достичь понижением температуры. Поскольку макромолекулы совершают дйи-жение не как единое целое, а сегментами (т. е. частями, и это отдаленно напоминает движение гусеницы), то для фиксации всей цепи достаточно зафиксировать лишь часть сегментов, хотя при этом другая часть из них может сохранять некоторую свободу перемещения. Это обстоятельство является одной из причин больших деформаций полимерных стекол, к которым приложены значительные усилия. При стекловании между макромолекулами не возникает новых типов связей. В затвердевшем полимере наблюдается ближний порядок в расположении отдельных частей и атомных групп макромолекул. [c.23]

    Надмолекулярную структуру биополимеров характеризует также состояние их агрегации в растворах. В жидкостях существует так называемый ближний порядок, т. е. известная упорядоченность близко расположенных друг к другу молекул при полном отсутствии связи между достаточно удаленными друг от друга молекулами. Процессы кристаллизации полимеров могут происходить только в упорядоченных ранее системах, а простейшее явление упорядочения макромолекул, т. е. возникновение надмолекулярных структур, происходит уже в аморфных полимерах. Поэтому исследование надмолекулярных структур в аморфном состоянии и состоянии в растворах должно быть первым этапом структурных исследований. [c.159]

    Если в кристаллах существует так называемый дальний порядок — правильное размещение частиц (молекулы, ионы) на относительно больших расстояниях, то в жидкостях соблюдается только ближний порядок , при котором эта упорядоченность быстро утрачивается с увеличением расстояния. Кроме того, сами центры упорядоченности в жидкостях постепенно меняют свое место. Другими словами, отдельные молекулы жидкости окружены почти правильно расположенными соседними молекулами, возникает какая-то местная структура, напоминающая кристалл. Такая структура, однако, скоро исчезает по мере удаления от центральной молекулы, а вместо нее наблюдается совершенно произвольное размещение частиц. [c.400]

    Рассмотрим теперь изменения, происходящие при плавлении подобной кристаллической решетки или при растворении макромолекул. При плавлении обычных низкомолекулярных веществ исчезает дальний порядок, характеризующий кристаллическую решетку, а ближний порядок — расположение ближайших соседей вокруг данной молекулы— остается в жидкости практически тем же, что и в кристалле. Это и естественно, так как плотность жидкости мало отличается от плотности кристалла. При плавлении или растворении кристаллического полимера дальний порядок, очевидно, исчезает. Тело становится аморфным. Однако ближний порядок, определяемый взаимодействием ближайших соседей, сохраняется. Причем, что особенно интересно, в изолированной цепочке, окруженной растворителем, сохраняется тот же ближний порядок, что и в полимерном кристалле. Это означает, что соседние звенья одной цепи образуют как бы витки спирали той же структуры, которая была свойственна данному полимеру в кристаллической решетке. Правда, если мы попытаемся продолжить подобные отдельные витки дальше и отыс1 ать в макромолекуле структуру спирали, мы увидим, что это невозможно, так как регулярность структуры вдоль цепочки быстро нарушается и сходит на нет. [c.76]

    Характер распределения ССЕ в твердых телах позволяет разделить их по степени симметрии на кристаллические п аморфные нефтяные дисперсные структуры. Твердые нефтяные тела, в которых расположение соединений имеет дальний порядок, соответствующий периодическому повторению определенной архитектуры в трех измерениях, называют кристаллическими, а расположение соединений в них — кристаллической структурой. Порядок, свойственный расположению соединений внутри твердого тела, часто приводит к симметрии его внешне] ) формы. Например, кристаллы графита имеют гексагональную форму, в базисных плоскостях атомы расположены в углах шестиугольников, на расстоянии 0,142 нм, т. е. на таком же расстоянии, как и в молекулах бензола. Прочность связей углерода в базисной плоскости кристалла графита примерно в шесть раз выше, чем в атомах углерода, расположенных на двух плоскостях, находящихся на расстоянии 0,3345 нм. Кристаллы графита имеют высокую симметрию. Аналогично другая форма кристалла углерода — алмаз — образует куб. В узлах кристаллическо 1 решетки алмаза а-связи каждого атома углерода направлены к четырем соседним атомам. Теплота сгорания алмаза несколько выше, чем графита. В связи с этим осуществляется переход при нагреве алмаза в графит в термодинамически более устойчивое состояние, в результате чего формируется новая симметрия. Симметрия также свойственна таким твердым нефтяным телам, как парафины. Известны нефтяные твердые тела с ближним порядком расположения соединений, они являются не кристаллами, а крайне вязкими жидкостями. К ним относятся, например, битумы, пеки, остаточные крекинг-остатки и др. [c.165]

    В работах Стюарта и Френкеля [1.1] было установлено, что даже в обычных низкомолекулярных жидкостях существуют упорядоченные участки молекул — рои ( сиботактические группы ), в которых наблюдается ближний порядок в расположении молекул. Эти рои термодинамически неустойчивы и носят флуктуационный характер. Время жизни таких роев определяется энергией межмо-лекулярного взаимодействия и интенсивностью теплового движения. [c.18]

    Твердое щество может находиться в кристаллическом и аморфном состоянии. Для торо чтобы нагляднее представить себе различия мсжд) кристаллическими и аморфными веществами, а также между твердыми телами и жидкостями, рассмотрим более подробно вопрос об упорядоченности во взаимном расположении атомов или молекул в них. Упорядоченность, которая проявляется иа расстояниях, сравнимых с межатомными, является упорядоченностью ближнего порядка, а упорядоченность, повторяющаяся на иеограииченпо больших расстояниях,— дальнего порядка. Как известно, в газах (точнее, в идеальных газах) расположение молекулы в какой-либо точке пространства ие зависит от расположения других молекул, т. е. в них отсутствует дальний и ближний порядок. Что же касается жидкостей и аморфных тел, то в них уже существует ближний порядок, характеризующийся некоторой закономерностью в расположении соседних атомов. Дальний порядок в жидкостях и аморфных телах отсутствует, так как на больших расстояниях этот порядок размывается и постепенно переходит в беспорядок . [c.11]

    Наиболее четкие рентгенограммы наблюдаются для кристаллических образцов, а жидкости, стекла и аморфные вещества характеризуются наличием лишь размытых дифракционных колец, интенсивность которых резко падает с увеличением угла 0. Тем не менее, анализируя такие дифракто-граммы, можно получить обширную информацию о строении этих сред, в которых отсутствует дальний порядок (т. е. упорядоченное расположение частиц вдали от атома или молекулы, выбранной условным центром), но имеет место ближний порядок со свойственным ему упорядоченным расположением частиц, находящихся в непосредственной близости от условного центра. [c.122]

    На явлении рассеяния основаны экспериментальные методы получения спектров плотности в структурном анализе. Эти методы применимы к определению функций распределения плотности независимо от агрегатного состояния вещества. В газе нет корреляции в расположении частиц, поэтому складываются интенсивности волн, рассеянных отдельными частицами. Из картины рассеяния, в случае одноатомного газа, путем фурье-преобразова-ния находят распределение электронной плотности в атомах. Для многоатомного газа с помощью модельных расчетов определяют строение газовых молекул, в растворах изучают форму и размеры макромолекул, частиц вирусов и т. д. В жидкостях и аморфных телах существует корреляция в расположении ближайших соседей. Анализ картин рассеяния в этом случае позволяет определить ближний порядок. В кристаллах, как следствие периодичности структуры, имеется как ближний, так и дальний порядок. Дифракционная картина, получаемая от кристалла, является по содержащейся в ней информации наиболее богатой. Из этой картины, даже для таких сложных объектов, как биополимеры, можно определить координаты всех атомов кристалла [8]. [c.14]

    Второе предположение сводится к преставлению о квазикристал-лической структуре, жидкости каждая молекула окружена соседними, которые располагаются вокруг нее почти так же, как и в кристалле того же вещества. Однако во втором слое появляются отклонения от упорядоченности, которые увеличиваются по мере отдаления от первоначально взятой молекулы иначе говоря, отступление от правильного расположения по мере удаления от данной молекулы систематически возрастает и на большом расстоянии становится очень значительным — в жидкости существует ближний порядок. Этим строение жидкости отличается От строения кристаллов, характеризующегося строгой повторяемостью одного и того же элемента структуры (иона, атома, группы атомов, молекул) во всех направлениях, т. е. дальним порядком. Таким образом, при Тжидкость является искаженным кристаллом, в котором утрачен дальний порядок. [c.278]

    Известно, что любая низкомолекулярная жидкость неоднородна по плотности, в ней существуют так называемые флуктуации плотности. Рассеяние света чистыми жидкостями обусловлено именно наличием флуктуаций плотности, как это хорошо известно из курса физики. Флуктуации плотности возникают благодаря наличию значительных по величине сил межмолекулярного взаимодействия. Силы межмолекулярного взаимодействия могут оказаться столь значите. ьными, что даже в неполярных низкомолекулярных жидкостях в отдельных микрообъемах молекулы укладываются упорядоченно. Микрообъемы, в которых этот порядок сохраняется, малы, поэтому и порядок в расположении молекул называется ближним порядком он быстро нарушается и переходит в структуру неупорядоченного расположения молекул. Чем больше микрообъемы, где сохраняется ближний порядок, чем совершеннее укладка [c.96]

    Вместе с тем нельзя слишком буквально понимать квазикристалличность структуры жидкости. Вдали от температуры плавления ближний порядок и характер движения частиц в жидкостях и кристаллах различаются очень сильно. Для несферических молекул ближний порядок в кристалле и жидкости сходен только в срав1гительно узкой области температур вблизи температуры плавления. При более высоких температурах свободное вращение несимметричных молекул в жидкости приводит к возникновению высокосимметричных ячеек, которые не возникают в кристаллических телах. Наличие ячеек — это в первую очередь следствие высокой плотности жидкости, благодаря чему движение молекулы ограничено присутствием близко расположенных соседних частиц. [c.258]

    Жидкое состояние вещества является промежуточным между твердым и газообразным (рис. 1.1). Сбласть существования жидкости ограничена со стороны низких температур переходом в твердое состояние (точки сМ ), а со стороны высоких — переходом в газообразное состояние (точки с, е). Линия АК, разделяющая жидкую и газообразную фазы, заканчивается критической точкой, соответствующей температуре и давлению р р, выше которых невозможно существование жидкости в равновесии с паром. Линия равновесия жидкость — твердая фаза критической точки не имеет. У металлов температура плавления повышается с увеличением давления (кривая АВ) у льда, кремния, гер1иа-ния — понижается (кривая АВ ). Точка А на диаграмме состояния соответствует температуре и давлению, при которых в закрытом сосуде находятся в равновесии твердая, жидкая и газообразная фазы. Жидкости сочетают некоторые свойства как твердых тел, так и газов. Твердые тела бывают кристаллические и аморфные. По типам связи кристаллы подразделяют на атомные, ионные, металлические и молекулярные. Они обладают ближним и дальним порядками. Ближний порядок означает правильное расположение около фиксированного атома, иона или молекулы определенного числа ближайших соседей. Дальним порядком называется расположение частиц в определенной последовательности с образованием единой трехмерной решетки. При наличии дальнего порядка расстояние до любого атома кристалла вычисляется через параметры элементарной ячейки по формуле [c.7]

    Как известно, вещества могут находиться в трех фазовых состоя- ниях — газообразном, жидком (аморфном) и кристаллическом. Все эти состояния определяются различной степенью упорядоченности в расположении частиц, из которых состоит данное вещество. Кристаллическое фазовое состояние характеризуется опре-/ еленным порядком в расположении молекул, атомов или ионов ( дальний порядок ). Газообразное состояние, наоборот, отличается полным беспорядком в расположении частиц. По этому признаку жидкое (аморфное) состояние занимает промежуточное положение между кристаллическим состоянием и газообразным, В жидкостях наблюдается некоторая упорядоченность в распо- ложении частиц даже при сравнительно высоких температурах [( ближний порядок ). [c.245]

    Рентгеноструктурные исследования простых жидкостей, с помощью которых в (шх были обнаружены упорядоченные образо-ван[1Я, долгое время давали основание предполагать существование квазикристаллической структуры жидкости. В настоящее ггремя От таких представления отходят. Наблюдается тенденция к проведению аналогии между жидкостью н газом, тем более, что с газах вблизи критичес[4ой температуры рентгенографически также обнаружен ближний порядок в расположении молекул. [c.127]

    В кристаллическом твердом теле частицы (атомы, молекулы, ионы) находятся в узлах кристаллической решетки в течение очень длительного времени, здесь существует как ближний, так и дальний порядок в расположении частиц. Из данных по рассеиванию рентгеновских лучей и нейтронов можно вычислить функцию плотности распределения частиц в зависимости от расстояния г от одной частицы, выбранной в качестве центра. При наличии дальнего порядка функция р(г) имеет ряд четких максимумов и минимумов. В жидкости из-за высокой подвижности частиц сохраняется только ближний порадок. Это четко следует из рентгенограмм жидкостей функция р(г) для жидкости имеет четкий первый максимум, размытый второй и затем р(г) onst (рис. 7.1). Это означает, что в жидкости существует только ближний порядок, а на далеких от частицы расстояниях расположение частиц хаотично, как в газе. Плавление кинетическая теория жидкостей описывает следующим образом. В кристаллической решетке твердого тела всегда существуют в небольшом количестве вакансии (дырки), медленно [c.181]


Смотреть страницы где упоминается термин Жидкости ближний порядок расположения молекул: [c.164]    [c.115]    [c.229]    [c.73]    [c.27]   
Физическая и коллоидная химия (1960) -- [ c.59 ]




ПОИСК





Смотрите так же термины и статьи:

Порядок ближний



© 2025 chem21.info Реклама на сайте