Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Действие интенсивных механических напряжений

    ДЕЙСТВИЕ ИНТЕНСИВНЫХ МЕХАНИЧЕСКИХ НАПРЯЖЕНИЙ [c.41]

    Термоокислительные механизмы деструкции часто сопутствуют механохимическим реакциям в расплаве полимера, который обычно имеет высокую температуру. Эксперимент показал, что термоокислительные реакции идут с большей интенсивностью под действием сдвиговых напряжений, чем в их отсутствие при той же температуре [34, 232, 233, 266, 271, 420, 682, 832, 883]. Независимо от типа деструкции (термическая или окислительная) накопление в цепях механической энергии приводит к значительному снижению температуры, необходимой для протекания этих процессов. При этом надо исключить любое увеличение температуры под действием деформирования. Отмеченное явление, таким образом, согласуется с известным влиянием сдвига на изменение потенциальной энергии разрыва связей [34]. Это соображение подтверждается экспериментами Регеля с сотр. [629, 631, 893, 895, 896, 1141, 1143, 1170, 1197—1199], которые исследовали летучие продукты, образующиеся при разрушении полимеров под действием постоянного растягивающего напряжения. Для ряда полимеров эти продукты оказались идентичными по составу с теми, которые образуются при термодеструкции [1197, 1199]. Скорость выделения газов экспоненциально растет с увеличением приложенного напряжения. Согласно Регелю, это означает, что механодеструкцию можно рассматривать как термодеструкцию, активированную напряжением. В частности, в указанных работах говорится, что механическое напряжение активирует разрыв макромолекул за счет снижения энергии активации процесса и препятствует рекомбинации разорванных молекул, растягивая их в разные стороны. Поэтому механодеструкция идет при температуре, которая значительно ниже температуры термодеструкции [629, с. 163]. В [629] была определена энергия активации процесса механодеструкции многих полимеров. Детально различные теоретические представления рассмотрены в следующем разделе. [c.21]


    Каргин п Соголова, исследуя процесс течения поливинилхлорида под действием больших напряжений, развивающихся в процессе вальцевания, пришли к заключению, что этот процесс сопровождается разрывом макромолекулярных цепей или образованием пространственных структур. Поскольку процесс деструкции компенсируется структурированием (деструкция начинается только под действием интенсивных механических сил), текучесть носит деструктивно-рекомбинационный характер. Авторы предлагают назвать подобный механизм текучести термином химическое течение . В случае поливинилхлорида химическое течение — это суммарный процесс механической и окислительной деструкций. [c.98]

    Как отмечалось выше газ, содержащий сероводород, может вызвать одновременно общую коррозию и коррозионное (сульфидное) растрескивание. В настоящее время механизм коррозионного растрескивания в растворах сероводорода рассматривают как разновидность водородного охрупчивания. Железо, взаимодействуя с сероводородом, на коррозирующей поверхности образует сульфид железа, специфические свойства которого способствуют более интенсивному проникновению атомарного водорода в металл. В результате этого при наличии механических напряжений от действия внешних нагрузок или остаточных напряжений созда- [c.8]

    Кроме того, метод ИК спектроскопии используется для изучения силового возмущения связей в полимерных молекулах под действием механических напряжений [48]. В основу методики определения напряжений на химических связях в скелете полимерных молекул положен эффект изменения формы полосы поглощения. Для свободного образца полоса ИК поглощения имеет симметричную форму относительно максимума. Под влиянием растягивающих напряжений максимум смещается в сторону низких частот, а форма полосы искажается с длинноволновой стороны образуется интенсивное крыло с хорошо выраженным краем, отстающим от максимума примерно на 25 см . Аналогичные эффекты наблюдаются для полимеров разнообразной природы на различных характеристических полосах поглощения. [c.235]

    Точно так же как и для точечной коррозии, мы до сих пор не имеем теории, которая удовлетворительным образом объясняла бы всю совокупность фактов, относящихся к коррозии в условиях механических напряжений. Считается, что в данном случае мы имеем дело с электрохим-ическим процессом, однако трудность заключается опять-таки в объяснении механизма зарождения трещин. В действительности, по- идимому, оказывается, что коррозия при механических напряжениях возникает лишь в таких средах, которые сами по себе оказывают лишь исключительно слабое коррозионное действие, почти неощутимое, но локализованное, не сопровождающееся общей поверхностной коррозией. Эта локализованная коррозия может быть интенсивной на очень узком участке — порядка расстояний между атомами. Следовательно, необходимым условием для развития коррозии при механических напряжениях является наличие чувствительности к избирательной локализованной коррозии (Харвуд [22]). [c.170]


    Чтобы понять характер изменений в системах, подвергнутых ультразвуковому воздействию, следует отметить, что эти изменения существенны, когда ультразвуковые колебания соответствуют возникновению кавитационного режима. В данном -случае под кавитацией понимают последовательно развивающиеся процессы образования полостей в жидких средах. Такие полости заполняются парами окружающей жидкости и растворенными в ней газами и мгновенно закрываются. При этом создается давление до 10 —10 Па, что в большинстве случаев приводит к разрыву х1 мпческих связей. Разумеется, что описанные явления имеют место Только при распространении в жидкости ультразвуковых волн большой интенсивности в местах разряжения. С кавитацией связано появление в облучаемой жидкой среде и значительных механических напряжений. В результате захлопывания кавитационных полостей в фазе сжатия внешней ультразвуковой волны возникают з дарные волны с амплитудой, во много раз превышающей амплитуду внешней волны. При резонансе возникающие локальные давления в 10 раз превосходят гидростатические. Такие давления производят большие разрушительные действия. Наконец, в пульсирующих резонансных кавитационных пузырьках в зависимости от природы наполняющего их газа возникают локальные перегревы порядка нескольких тысяч градусов. [c.107]

    Разрыв химических связей чисто механическим путем нельзя считать неожиданным явлением. На самом деле, энергия связи С—С ничтожно мала по сравнению с энергией, затрачиваемой при самых мягких условиях переработки полимеров. Благодаря тому что энергия, необходимая для перемещения макромолекул, превышает энергию химической связи, механические воздействия приводят к расщеплению отдельных цепных молекул, оказавшихся в зоне случайной концентрации механических напряжений. Подобное действие оказывают ультразвуковые колебания с частотой более 50 кГц интенсивностью 6—10 Вт/см. Во время озвучивания растворов полимеров происходит попеременное сжатие и растягивание среды с образованием и захлопыванием паровоздушных полостей (кавитация), но так как малоподвижные макромолекулы не успевают следовать за колебаниями молекул растворителя, возникают значительные градиенты, скорости и силы трения, приводящие к разрыву полимерных цепей. [c.640]

    В смесителях такого типа происходит менее интенсивное механическое воздействие на материал, поэтому они используются для выпуска сравнительно небольших количеств резиновых и пластмассовых композиций, особо чувствительных к действию повышенных температур и механических напряжений. [c.35]

    Как мы уже знаем, старение полимеров представляет сумму физико-химических изменений их исходной структуры, под воздействием химических реакций, протекающих под действием тепла, света, радиационных излучений, механических напряжений, кислорода, озона, кислот, щелочей. Эти реакции приводят к деструкции полимерных цепей или их нежелательному, неконтролируемому сшиванию, в результате чего полимеры становятся липкими и мягкими (деструкция) или хрупкими и жесткими (сшивание), а главное—менее прочными. В реальных условиях эксплуатации полимерных изделий на них действует одновременно несколько из перечисленных факторов. Например, солнечный свет, кислород воздуха, озон. Для стран с жарким климатом на это накладывается еще повышенная температура, влажность. При работе многие полимерные изделия разогреваются (иаиример, при многократных деформациях эластомеров) или используются для работы в условиях повышенных температур, в результате чего интенсивно развиваются термическое и термоокислительное старение полимеров. [c.201]

    Следовательно, при интенсивном механическом воздействии наряду с механической деструкцией полимера механические напряжения существенно ускоряют развитие окислительных процессов. Наблюдаемое увеличение скорости окислительных процессов при механической пластикации является следствием как инициирующего действия механической деструкции, так и активации химических связей вследствие деформации валентных углов и снижения энергетического барьера реакции. [c.43]

    Эксперименты на пикосекундной временной шкале и более короткой требуют других подходов. Световая вспышка, вызывающая возбуждение или фотолиз молекул исследуемого вещества, генерируется лазером с пассивной синхронизацией мод, оснащенным системой выделения одиночного импульса из цуга. Хотя пикосекундная импульсная спектроскопия опирается на методику двух вспышек — возбуждающей и зондирую -щей,— импульс зондирующего света обычно получается за счет преобразования части света возбуждающей вспышки, а необходимая короткая временная задержка легко достигается благодаря конечной скорости света. Зондирующий световой пучок направляется по варьируемому более длинному оптическому пути. Для абсорбционных экспериментов спектр этого излучения может быть уширен (например, ССЬ преобразует малую часть излучения лазера на неодимовом стекле с длиной волны 1060 нм в излучение в широком спектральном диапазоне). Для других диагностических методик, например КАСКР, это излучение может быть преобразовано в излучение другой частоты. Существует также ряд специализированных методик для изучения испускания света в пикосекундном диапазоне. Одна из них связана с электронным вариантом стрик-камеры. Для регистрации временной зависимости интенсивности сфокусированного пучка или светового пятна в механическом варианте стрик-камеры используется быстро движущаяся фотопленка. В электронном варианте изображение вначале попадает на фотокатод специального фотоумножителя типа передающей телевизионной трубки. Под действием линейно изменяющегося напряжения, прилагаемого к пластинам внутри трубки, образующиеся фотоэлектроны отклоняются тем сильнее, чем позже они вылетели из фотокатода. Для регистрации мест попадания отклоненных электронов может использоваться фосфоресцирующий экран с относительно длинным послесвечением, изображение на котором фотографируется или преобразуется с помощью электроники для последующего анализа. Этот метод носит название электронно-оптической хроноскопии. В альтернативном методе для изучения флуоресценции с пикосекундным временным разрешением Используется затвор, основанный на эффекте Керра (вращение плоскости поляризации света в электрическом поле), индуцируемом открывающим лазерным импульсом. В еще одном методе (флуоресцентная корреляционная спектроскопия) часть света возбуждающего импульса проходит через оптическую линию задержки и смешивается с испускаемой флуоресценцией в нелинейном кристалле (см. конец разд. 7.2.3), давая на выходе [c.203]


    Огромное практич. значение имеет взаимодействие НК с серой, хлористой серой, органич. перекисями и другими веществами, вызывающими вулканизацию. Вулканизация приводит к образованию сетчатых структур, в к-рых длинные макромолекулы каучука соединены ( сшиты ) между собой атомами серы или другого вулканизующего агента. Технически наиболее цепным свойством НК и особенно его вулканизатов является высокая эластичность. Мягкие вулканизаты (резины) из НК способны нри комнатной темп-ре обратимо растягиваться более чем на 1000% и имеют при этом сопротивление разрыву до 350 кг/сж (исходного сечения). В отличие от кристаллич. тел, деформация НК в пределах 100—200% растяжения не сопровождается изменением объема, а следовательно, и изменением внутренней энергии. В основном эластичность НК сопровождается уменьшением энтропии при растяжении и увеличением ее при обратном сокращении. Поскольку высокая эластичность НК связана с тепловым движением его гибких макромолекул, она может проявляться в той области темп-р, в к-рой это движение достаточно интенсивно. При темп-ре ок. —70° НК утрачивает эластичность даже при очень медленных воздействиях и становится хрупким выше 80—100° НК пластичен, т. к. нри этой темп-ре возникает возможность перемещения отдельных нитевидных макромолекул относительно друг друга. Величина деформации НК зависит не только от величины механич. напряжения, но и от длительности его действия (см. Механические свойства полимеров). При коротком действии сипы участки макромолекул НК не успевают перегруппировываться, и высокая эластичность не проявляется каучук ведет себя нри этом как твердое тело. Чем выше темп-ра, тем короче период релаксации, необходимый для установления равновесия между силой и деформацией. При комнатной темп-ре высокая эластичность НК проявляется, если продолжительность действия силы (в одном направлении) не менее одной стотысячной доли секунды. [c.247]

    Химически агрессивные среды сильно изменяют химическую структуру материала. При одновременном воздействии на материал механических напряжений и химически активной среды результат зависит от сравнительной их интенсивности и связан с характером действия каждого из этих факторов. [c.8]

    Особенностью износа резин в агрессивной пульпе, т. е. под действием движущихся с определенной скоростью частиц абразива, взвешенных в агрессивной жидкой среде, является определяющая роль эластичности резин. С увеличением эластичности сопротивление износу резин возрастает. Это связано с тем, что при ударе частицы абразива о резину значительная (пропорциональная эластичности) часть поглощенной кинетической энергии частиц отдается обратно за счет упругого деформирования резины, а не тратится на разрушение. Наименьший износ наблюдается при угле атаки частиц 90°, т. е. при прямом ударе частиц по поверхности. Износ увеличивается с ростом концентрации твердых частиц до 30% (об.) и далее практически не меняется, вследствие того, что частицы абразива теряют свободу перемещения и ударяются друг о друга. С повышением скорости соударения, в соответствии с тем, что энергия частицы пропорциональна квадрату ее скорости, скорость износа возрастает по степенному закону. По той же причине возрастания энергии частиц с увеличением массы скорость износа пропорциональна диаметру частиц в области 0,06—-8 мм. Характерной особенностью, отличающей данный вид износа, является то, что действие агрессивной среды становится более ярко выраженным при увеличении интенсивности механического воздействия. Это наблюдается при увеличении концентрации абразива в воде, в азотной кислоте при увеличении скорости потока частиц, при наложении на резину растягивающих напряжений. Эта особенность, отличающая износ в пульпе от разрушения в агрессивной среде при. растяжении, когда имеет место обратная зависимость, по-видимому, связана с тем, что разрушение в пульпе проходит в две стадии  [c.131]

    Как было показано выше, химическое течение может быть вызвано также механической деструкцией трехмерной сетки. Однако между этими двумя видами дестпуктивного течения имеются существенные различия. При химическом течении, вызванном интенсивным механическим воздействием, молекулярные цепи или их обрывки приобретают способность свободно перемещаться относительно друг друга. Поэтому после механической деструкции сетки начинается истинное физическое течение полимера, сопровождающееся разрушением трехмерной структуры. В процессе течения вновь возникающие химические связи де-структируются под действием интенсивных механических напряжений. Значительное сшивание полимера происходит только после прекращения действия внешних сил. [c.239]

    В зависимости от условий эксплуатации один из этих факторов может стать превалирующим. Так, в случае приложения больших напряжений при разрыве, при действии концентраторов напряжений главную роль играют процессы физического (механического) разрушения без активного воздействия окружающей среды. При длительном воздействии небольших напряжений в статических условиях, при многократных деформациях, износе, особенно в присутствии активной среды, существенными становятся процессы взаимодействия эластомера в первую очередь с кислородом, озоном, влагой воздуха или со специфической средой, в которой он эксплуатируется. Это взаимодействие активируется наложенным напряжением как за счет увеличения вероятности процессов деструкции полимера, так и, в меньшей степени (из-за малого действующего напряжения), за счет снижения энергии активации реакции. Образующиеся при интенсивном механическом воздействии (утомление, износ) свободные полимерные радикалы участвуют во вторичных процессах, которые могут усугублять разрушение. [c.221]

    Оборудование предприятий нефтехимии и нефтепереработки рабо-тг1ет в условиях действия механических напряжений, высоких температур, природных и технологических коррозионно-активных сред, инициирующих возникновение и накопление повреждений, приводящих со временем к нарушению его работоспособности. Преобладающая часть парка оборудования нефтепереработки имеет поверхностный контакт с рабочей средой, эксплуатируется в очень жестких режимах -- в условиях действия высоких давлений и температур. Современные технологические процессы ориентированы на углубление переработки нефтяного сырья. Увеличение выхода светлых нефтепродуктов связано с повышением роли деструктивных процессов переработки нефти, что в свою очередь ведет к интенсификации технологических процессов и усложнению конструкции оборудования. В последние годы в переработку вовлекаются все большие объемы нефтей с повьппенным содержанием сероводорода, минеральных солей и газоконденсатов с высоким содержанием агрессивных компонентов. Это обстоятельство значительно усложняет условия эксплуатации оборудования, вызывая интенсивное развитие различных коррозиошак процессов. Коррозионная активность технологических сред является одним из основных факторов, снижающих надежность металлических конструкций и способствующих зарождению трещин [4]. Агрессивное воздействие рабочих сред обусловлено обводненностью нефти, наличием в ней кислых компонентов, сернистых и хлористых соединений, а так же применением в процессе подготовки и переработки коррозионно-активных реагентов. Как показали результаты диагностирования 59 резервуаров для хранения нефти и нефтепродуктов (годы постройки 1975 - 80, объем резервуаров 20 ООО м ), при суммарном содержании в нефти воды, хлора и серы более 3 % коррозионное растрескивание имело место во всех резервуарах, эксплуа-тировавпшхся более 15 лет [3]. Особую опасность представляет разрушение оборудования в условиях действия водородосодержащих и водородо-вьщеляющих сред. [c.7]

    В дальнейшем уравнение (1.143) было применено в различных режимах нагружения и длительности действия нагрузки Естественно, что параметры В и С изменяются в зависимости от величины и длительности действия механического напряжения. Интенсивность механической нагрузки влияет, главным образом, на параметр С, который резко убывает с ростом ст параметр В уменьшается незначительно длительность механического воздействия оказывает на все три параметра менее выраженное влияние. [c.104]

    Скорость окисления вулканизатов значительно возрастает при возникновении в них механических напряжений, вызываемых статическими и особенно многократными деформациями. Увеличение скорости окисления обусловлено тем, что механические напряжения, действуя против валентных сил, соединяющих атомы в молекулярных цепях каучуков, ослабляя их, снижают энергетический барьер реакции окисления (механическая активация). Чем интенсивнее механическое воздействие на вулканизат, тем в большей степени снижается энергия активации процесса. [c.217]

    Интенсификацию процессов химического воздействия на полипропилен при приложении растягивающих нагрузок можно объяснить устранением диффузионных задержек, обусловленным раскрытием микродефектов, по которым возможна миграция среды в объем материала. Кроме того, действие механических напряжений вызывает активирование химических реакций вследствие деформирования химических связей и образования свободных радикалов, которые могут вступать во взаимодействие со средой. Наконец, механическая работа при деформировании полимеров частично затрачивается на интенсификацию химических процессов. С увеличением концентрации кислоты процесс разрушения химических связей идет более интенсивно и, как следствие, возрастает деформация ползучести материала. [c.59]

    Исходя из опыта, мы видим, что основными источниками разрушения труб являются зоны концентрации механических напряжений, в которых процессы коррозии, ползучести и усталости протекают более интенсивно. Концентрация напряжений на отдельных участках может возникать из-за различных нарушений и отступлений от проектной схемы, допускаемых при монтаже и ремонте, подвижек грунта, действия грунтовых вод и т.п. Для своевременного выявления участков труб с максимальной концентрацией напряжений может быть применен магнитный способ контроля подземных трубопроводов, основанный на эффекте магнитной памяти металла (МПМ). [c.315]

    Коррозионные разрушения трубопровода могут быть усилены, когда действуют одновременно коррозия и механические напряжения. Опыт эксплуатации магистральных трубопроводов показывает, что они нередко подвергаются интенсивной почвенной коррозии. Так, за 12 лет эксплуатации нефтепроводов общей протяженностью около 1000 км, залегающих в коррозионных грунтах и не имеющих катодно защиты, было 1182 коррозионных повреждения. Или, например, нефтепровод Гурьев — Орск на участке Гурьев — 60 км после В лет эксплуатации (в 1944 г.) был частично отремонтирован. В 1948 г. этот же трубопровод оказался сплошь покрытым глубокими кавернами, и на протяжении 10 км его пришлось заменить новым. В таком же состоянии оказался нефтепровод на участке Доссор — Макат. [c.21]

    Особый механизм развития необратимых деформаций наблю-дается в случае структурированных полимеров, молекулы которых соединены в единую сетку. Так, известно, что при нагревании некоторых полимеров, например поливинилхлорида, происходят химические процессы, ведущие к структурированию. При механических воздействиях, например при вальцевании, одновременно происходит другой процесс—механическая деструкция, т. е. разрыв цепных молекул. Однако оказалось, что процессы структурирования развиваются не только под действием тепла, но и как прямое следствие воздействия механических напряжений, так как при интенсивном механическом воздействии, приводящем к разрыву цепных молекул, неизбежно должны развиваться процессы рекомбинации. Осколки, образующиеся при механическом разрыве макромолекул, необратимо перемещаются друг [c.115]

    Чтобы выяснить смысл этого нового понятия, будем рассматривать каждый вид энергии как произведение двух величин 1) фактора интенсивности (интенсивного свойства) и 2) фактора емкости (экстенсивного свойства). Так, механическая энергия определяется величиной fdl, т. е. произведением силы на приращение пути электрическая — т.е. произведением э. д. с. на количество переносимого электричества магнитная — Bdl, т.е. произведением магнитной индукции на намагниченность, объемная — PdV, поверхностная энергия — add), т. е. произведением поверхностного натяжения на изменение поверхности, потенциальная — mgd/z, кинетическая— V /2)dm и т. д. наконец, химическая — ydn. Факторы интенсивности нередко объединяют под общим названием обобщенных сил, а фактор емкости называют обобщенным путем. Так, в случае механической энергии величина силы является множителем напряжения (так же, как Р, а, р и т. д. в соответствующих видах энергии), а величина пройденного пути, т.е. соответственно изменения V, а, п я т. д., показывают в какой степени проявляется действие силы. [c.115]

    Переходя к обратным электрокинетическим явлениям, отметим их сходство с пьезоэффектом — появлением разности потенциалов при деформировании некоторых кристаллических веществ — пьезоэлектриков. Отличие состоит в том, что пьезоэффект характеризует изменение равновесного состояния вещества при действии на него механических напряжений, а гидродинамическая поляризация дисперсной системы отражает интенсивность течения необратимого процесса — переноса заряда (электрического тока), который может быть вызван механической силой (градиентом давления) при надлежащих условиях. Величины эффектов, форму их проявления (в виде потенциала или тока гидродинамической поляризации), связь с прямыми элек-трокинетическими эффектами (форез, осмос) можно установить, основываясь на общих положениях термодинамики необратимых процессов. [c.612]

    Подводя итоги, можно сказать, что в зависимости от характера взаимодействия между составляющими твердое тело и среду компонентами, а также структурных особенностей твердого тела и совокупности внешних условий могут наблюдаться весьма разнообразные по форме и интенсивности проявления эффекты облегчение пластического течения твердого тела либо, наоборот, хрупкое разрушение под действием пониженных напряжений, механохимические процессы в зоне контакта, механическая активация коррозионных взаимодействий, процессы, приближающиеся по характеру к самопроизвольному диспергированию (квазисамопроизвольное диспергирование), истинное самопроизвольное диспергирование, приводящее к возникновению термодинамически равновесной лиофильной коллоидной системы. Сложный и разнообразный характер процессов взаимодействия между механически напряженным твердым телом и контактирующей с ним средой требует тщательного всестороннего анализа закономерностей и условий протекания этих процессов и их взаимосвязи для сознательного использования (или предотв,ращен,ия) эфф1екта Реби,нд,ера. [c.345]

    Электрохимическими исследованиями, проведенными совместно с А.М.Крохмальным [208, с. 57—61], установлено рис. 100), что стационарный потенциал цинкового покрь Тия равен примерно -870 мВ, т.е. на 300-320 мВ отрицательнее стационарных потенциалов сталей. За 12 сут испытаний без приложения циклических напряжений (что соответствует базовому количеству циклов вращения 5 10 цикл) потенциалы оцинкованных образцов сдвигаются до — (780 — 800 мВ) вследствие формирования на поверхности плотного слоя оксидо-солевых продуктов коррозии, состоящих из оксидов и гидрооксида цинка. При высоких механических напряжениях происходит смещение электродных потенциалов стали на 80—100 мВ в отрицательную сторону от стационарного значения. Величина смещения потенциалов растет с уменьшением прочности стали и повышением уровня приложенного напряжения. Воздействие циклических напряжений в начале испытаний приводит к появлению в слое трещин, достигающих основного металла, что является причиной резкого смещения потенциала. На последующих этапах испытаний потенциалы образцов сдвигаются в положительную сторону на 30-50 мВ, а затем относительно стабилизируются (см.рис. 100, // участок кривой 3), что связано с пассивацией ювенильных поверхностей покрытия и контактированием коррозионной среды через трещины со сталью, имеющей более положительный потенциал, чем покрытие. Сдвиг потенци4ла в положительную область увеличивается с ростом уровня напряжений и понижением прочности стали, так как эти факторы усиливают разрушение покрытия, и площадь оголенной стали увеличивается. Потенциал образовавшейся коррозионной системы покрытие — основа лежит в достаточно отрицательной области (—900 мВ и ниже), поэтому поверхность стали находится в условиях полной электрохимической защиты в результате протекторного действия покрытия. Однако влияние высоких напряжений без коррозионного фактора приводит к развитию разрушения в глубь стали, что сопровождается интенсивным смещением потенциала в положительную сторону /// участок). Полное разрушение образца сопровождается резким сдвигом потенциала в отрицательную сторону IV участок). [c.186]

    Выше отмечалось, что при прочих равных условиях вероятносю механокрекинга определяется соотношением сил межмолекуляр-ного взаимодействия и прочности химических связей в основной "цепи. Таким образом, можно было бы предположить, что эффективность механокрекинга при прочих равных условиях и достаточной интенсивности механических сил будет выше для полимеров с сильным межмолекулярным взаимодействием. Это в известной степени оправдывается при механодеструкции полимеров, находящихся в высокоэластическом состоянии, когда перемещение цепей под действием внешних сил во времени и пространстве позволяет реализовать различные соотношения между энергией межмолекулярных и главных валентных связей цепи. Тогда вероятность ме-ханокрекияга можно оценить, исходя из этих соотношений. По-видимому, осложнения возможны только в связи с перепутыванием цепей, образованием петель и зацеплений, препятствующих их взаимному перемещению, независимо от энергии межмолекулярного взаимодействия. Но расчеты показывают [77, 152], что и в зтом случае наибольшие напряжения возникают в середине цепи. Механическая энергия для возбуждения механокрекинга должна подводиться к полимеру с наименьшими потерями. Способ ее подведения и распределения по объему зависят от физических свойств, а следовательно, и химической природы полимера. Оценка распределения подведенной механической энергии по цепи еще более затруднена в случае сравнительно высокочастотных ударных воздействий. Современное состояние наших представлений о полимерах не позволяет однозначно судить о распределении механической энергии по объему, да еще при ударном воздействии. [c.62]

    Анализ данных, полученных при оценке влияния базовых масел, присадок и ингибиторов коррозии на наводороживание при трении и водородный износ по комплексу методов, позволяет следующим образом объяснить полученные результаты. При испытании на машине трения СМЦ-2 базовых масел, обладающих низким уровнем смазочньк свойств и характеризуемых высоким износом, максимум температуры и механических напряжений локализуется в плоскости контакта поверхностей трения, в связи с чем выделяющийся водород не диффундирует в металл, что и фиксируется методом анодного растворения. При введении в базовые масла эффективных противоизносных присадок, обладающих высоким уровнем смазочного действия и способностью образовывать прочные трибохимические пленки, максимум температуры и механических напряжений при жестких режимах трения локализуется на некоторой глубине от поверхности трения. Создаваемый при этом градиент температуры и механических напряжений обусловливает интенсивную диффузию выделяющегося при трении водорода в металл, а промоторами наводороживания могут являться соединения серы, фосфора и других элементов, содержащиеся в противоизносных присадках и выделяющиеся при трибодеструкции присадок в зоне трения. Отсутствие остаточного наводороживания поверхностей трения при испытании на машине трения СМЦ-2 присадки ДФБ, по всей верс ятности, обусловлено наличием в составе присадки бора, который обладает минимальной способностью стимулировать наводороживание стали /см.рис. 2/, что в сочетании с высокими противоизносными свойствами обусловливает высокую эффективность присадки ДФБ в условиях коррозионно-механического и водородного износа. [c.56]

    Большинство эластомеров, содержащих двойные связи, обладает значительной реакционной способностью, благодаря чему они претерпевают изменения в воздушной среде. Эти процессы особенно интенсивно протекают в напряженных резинах. В последнее время они привлекают усиленное внимание в связи с прогрессирующим загрязнением атмосферы промышленно-транспортными отходами и повышением ее химической реактивности за счет увеличения содержания озона, двуокиси азота, сернистого газа и других агрессивных компонентов. Несмотря на специфику разрушения резин при одновременном действии механического напряжения и среды оно позволяет выявить особенности влияния на этот процесс изменения структуры материала, вызванного деформацией, различными условиями ее образования, введением наполнителей и т. д., а также связь прочностных свойств с реологическими и другими характеристиками материала. При этом исключаются из рассмотрения случаи, когда материал перерождается под влиянием среды во всем объеме, как это, например, наблюдается при действии азотной кислоты на напряженную резину из бутилкаучука [1] или озона на резину из силоксанового каучука [2]. В этих случаях ввиду изменения химической структуры и всех свойств материала вряд ли имеет смысл говорить о зависимости сопротивления разрушению от исходной структуры материала и влияния на эту зависимость агрессивных воздействий. Такое сравнение (разумеется, с учетом специфики действия агрессивного агента) возможно для случаев локального разрушения, облегченного агрессивным агентом (коррозионное растрес- [c.132]

    Металл теплоэнергетического оборудования в условиях эксплуатационных режимов подвергается коррозионному разрушению под действием контактирующей с ним среды, т. е. воды, пара и топочных газов. Значительную роль в протекании коррозионных процессов играют механические напряжения и тепловые нагрузки. Действие совокупности перечисленных факторов определяет многообразие видов коррозионных процессов, способствующих разрушению металла. Интенсивность развития коррозионного разрушения в основном определяется прочностьт защитной плен- [c.17]

    При сушке коллоидных капиллярно-пористых влажных материалов при радиационном способе подвода тепла может наблюдаться интенсивное перемещение влаги в начале процесса внутри материала. Особенно наглядно это заметно при начальном равномерном раапреде-лении влаги в сушимом образце (рис. 2-6,е, Ы1>Мо). Перемещение влаги происходит благодаря закону термовлагопроводности, согласно которому влага движется в направлении теплового потока. Через некоторое время в центральных слоях материала устанавливается большая влажность, чем на поверхности, создается градиент влажности, под действием которого влага начинает перемещаться в обратном направлении, т. е. от центра к поверхности, с которой она и испаряется в окружающую среду. В этом случае градиент температур как бы создает градиент влажности, под действием которого влага перемещается к поверхности. Как известно, наличие значительных перепадов влажности в материале вызывает механические напряжения, что приводит к растрескиванию и порче материала. Поэтому терморадиационная сушка в чистом виде многих коллоидных капиллярно-пористых материалов не может найти промышленного применения, если не сочетать ее с другими способами подвода тепла. [c.28]

    Характерной особенностью стабилизаторов этой группы является ослабление разрушающего действия механических напряжений, особенно интенсивных при переработке ПВХ. Уменьшение разрушающего действия достигается не только химической стабилизацией ПВХ, но еще и регулированием текучих свойств композиций за счет смазывающего действия лубрикантов непосредственно в перерабатывающих машинах. При этом снижается температура переработки, обеспечивается ровное и быстрое протекание процесса формования матералов или изделий из ПВХ, улучшается текучесть композиций, уменьшается внутреннее трение и, как следствие, количество тепла, выделяющегося в результате механической работы. Одновременно предотвращается прилипание композиции к металлическим поверхностям оборудования, улучшается распределение входящих в ее состав компонентов зо -з17 [c.317]


Смотреть страницы где упоминается термин Действие интенсивных механических напряжений: [c.504]    [c.4]    [c.107]    [c.117]    [c.175]    [c.101]    [c.110]    [c.24]   
Смотреть главы в:

Физико-химические основы получения, переработки и применения эластомеров -> Действие интенсивных механических напряжений




ПОИСК





Смотрите так же термины и статьи:

Механическое действие



© 2025 chem21.info Реклама на сайте