Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Определение дисперсности и формы частиц

    Результаты определения дисперсного состава пыли обычно представляют в виде зависимости массовых (иногда счетных) фракций частиц от их размера. Под фракцией понимают массовые (счетные) доли частиц, содержащиеся в определенном] интервале размеров частиц. Распределение частиц примесей по размерам может быть различным, однако на практике оно часто согласуется с логарифмическим нормальным законом распределения Гаусса (ЛНР). В интегральной форме это распределение описывают формулой  [c.283]


    В настоящее время оптические методы являются наиболее распространенными методами определения размера, формы и структуры коллоидных частиц. Это объясняется не только быстротой и удобством этих методов, но и точностью получаемых результатов. Грубые дисперсные системы (суспензии, эмульсии, пены, пыли) обычно исследуют с помощью светового микроскопа. К наиболее часто применяющимся методам исследования высокодисперсных коллоидных систем относятся ультрамикроскопия, электронная микроскопия, нефелометрия и турбидиметрия. Реже применяют метод, основанный на определении двойного лучепреломления в потоке, рентгенографию и электронографию для исследования внутренней структуры и характера внешней поверхности частиц коллоидной системы. [c.44]

    Оптические свойства дисперсных систем используются на практике для изучения их структуры, определения размеров, формы частиц и их концентрации. Все эти определения основаны на соизмеримости электромагнитной световой волны-с Рис. 27. Эффект Тиндаля размерами КОЛЛОИДНЫХ частиц. Так [c.77]

    Пластичные смазки, а в определенной степени и парафинистые масла, при низких температурах являются тиксотропными системами. При нагружении таких систем в момент достижения предела прочности при сдвиге лавинообразно разрушаются основные связи в структурном каркасе. Это соответствует скачкообразному снижению предела прочности от измеряемой величины до нуля. После перехода за предел прочности смазка становится жидкостью. При снятии нагрузки между фрагментами дисперсной фазы (частицами загустителя) практически мгновенно возникают новые связи и формируется новый структурный каркас. Если бы размер и форма частиц дисперсной фазы, прочность и число контактов между ними при деформировании смазки не менялись, то и все свойства смазки сохранились бы неизменными. Фактически дело обстоит сложнее. [c.274]

    Влияние свойств пористого слоя на скорость фильтрования нередко выражают посредством параметров, определяющих его структуру, в частности эквивалентного размера пор, пористости слоя, удельной поверхности и щероховатости частиц. С этой целью принимают идеализированные модели пористого слоя, например модель цилиндрических капилляров. Однако в настоящее время принципы построения моделей пористых сред требуют уточнения [24]. Так, следует отметить, что способы определения параметров пористых сред адсорбцией, капиллярной конденсацией, ртутной поро метрией, электронной микроскопией нередко приводят к разным результатам, причем одни параметры модели и объекта могут совпадать, а другие различаться. Использование идеализированных моделей пористых сред не способствует лучшему пониманию процесса фильтрования, а все параметры, характеризующие пористую среду, в конечном счете приходится объединять в один, находимый экспериментально параметр, называемый коэффициентом проницаемости или удельным сопротивлением. К сказанному надлежит добавить, что отмечено шесть типов укладки моно-дисперсных шарообразных частиц в слое, причем форма пор, влияющая на гидродинамику слоя, различна для разных типов укладки [39]. [c.24]


    Дисперсионный анализ методом световой микроскопии. Под дисперсионным анализом понимают анализ дисперсности системы, включающий определение размера и формы частиц дисперсной фазы, их ко1щен1рации, удельной поверхности. Наиболее грубодисперсные системы с размером частиц от 5 мм можно исследовать визуально, измеряя размеры с помощью различных приспособлений типа кронциркуля. Для характеристики систем с дисперсностью 0,5—5,0 мм применяют ситовой анализ, используют лупы и т, д. Системы с дисперсностью от 0.5 мм и менее попадают в пределы применения световой микроскопии. При обычном освеи ении нижнему пределу светового микроскопа соответствует размер частиц порядка 0,5-10 " м. Освещение коротковолновыми ультрафиолетовыми лучами позволяет снизть этот предел до 1-10 м. [c.392]

    Пены и эмульсии — это дисперсные системы, которые состоят соответственно из газа, диспергированного в жидкости, и жидкости, диспергированной в другой жидкости. В отличие от золей, представляющих собой частицы твердого вещества, диспергированного в жидкости, пены и эмульсии характеризуются тем, что межфазная граница в них разделяет два вещества, обладающие текучестью. По этой причине форма частиц в этих системах определяется условием минимума поверхности при данном объеме. В разбавленных пенах и эмульсиях частицы дисперсной фазы приобретают сферическую форму. При более высокой концентрации дисперсной фазы ее частицы вследствие взаимного сжатия деформируются, образуя определенного вида полиэдры (в монодисперсных системах образуются правильные гексаэдры). Процесс разрушения дисперсной системы в пенах и эмульсиях не ограничивается только слипанием частиц (коагуляцией), но может продолжаться до полного их слияния, т. е. коалесценции. [c.221]

    Методы исследования золей (определение размера, формы и заряда коллоидных частиц) основаны на изучении их особых свойств, в частности оптических, обусловленных гетерогенностью и дисперсностью. Из явлений, возникающих при действии света на золь, наиболее характерно рассеяние света. Это явление проявляется в виде опалесценции при боковом расстворе-нии золя, через который проходит световой луч, внутри коллоидной системы наблюдается светящийся конус (явление Тиндаля). [c.423]

    Простейший способ количественного определения дисперсности системы — седиментационный анализ, заключающийся в оценке скорости оседания или всплывания диспергированных частиц в зависимости от их размера. При этом принимается условие, что частицы имеют шарообразную форму и движутся равномерно. Определение радиуса г частицы дисперсной фазы производится на основании закона Стокса с использованием формулы для скорости и оседания дисперсной частицы  [c.15]

    В методах химической конденсации вещество коллоида получается с помощью той или иной химической реакции и выделяется ири этом в коллоидном состоянии. Эти методы основаны большей частью на таких взаимодействиях в растворах, которые приводят к образованию вещества в условиях, когда оно нерастворимо. Образуясь первоначально в молекулярно-дисперсной форме, оно стремится выделиться из раствора в осадок. Необходимо так подобрать условия проведения реакции (концентрация реагирующих веществ, pH среды, последовательность операций, температура, перемешивание и пр.), чтобы процесс агрегации, т. е. соединения молекул в более крупные частицы, прекращался на определенной стадии во избежание слипания частиц. Обычно этому способствует применение растворов достаточно низкой концентрации и медленное смешение их. [c.530]

    Мембранный фильтр с осажденными частицами кладется на покрытую форм-варовой пленкой медную сеточку и затем растворяется ацетоном, в результате чего частицы остаются на пленке формвара. Потери частиц при этом незначительны, фон от фильтра устраняется и создаются идеальные условия для электронной микроскопии частиц Другой способ перенесения частиц с мембранного фильтра на сеточку был применен для определения дисперсного состава частиц [c.230]

    Для определения дисперсного состава частиц полидисперсной системы неправильной формы при помощи окуляра-микрометра удобен метод постоянного направления , при котором размеры частиц определяются вдоль некоторой оси. [c.298]

    При электролизе металл выделяют на катоде в виде хрупкого компактного осадка, который затем механически измельчают, либо в виде рыхлой губчатой массы, которая после отделения от катода, промывки и сушки в определенных условиях превращается в порошок. В первом случае порошки, полученные после размола, состоят из частиц различной формы и имеют сравнительно небольшую удельную поверхность. Второй способ получил большее развитие в промышленности. Путем подбора состава электролита и условий электролиза можно регулировать гранулометрический состав, насыпную плотность и чистоту осаждаемого металла. Отличительной особенностью порошков, полученных вторым способом, является дендритная форма частиц, что обусловливает их большую химическую активность и хорошую прессуемость. Электролитические порошки высокой степени дисперсности обладают пирофорными свойствами. [c.321]


    Лакокрасочные материалы представляют собой наполненные полимерные материалы, поскольку применяемые в них пигменты, так же как и наполнители, являются высокодисперсными порошками с частицами различных величины, формы и природы поверхности. Поэтому помимо пигментных свойств, обусловленных дисперсностью, формой частиц и цветом пигмента, они обладают по аналогии с наполнителями определенной активностью , обусловленной физико-химическими процессами, протекающими на их поверхности в полимерных связующих. [c.12]

    Непосредственный обмер отобранных порций частиц измерительным инструментом применим для частиц 3 мм и выше [64]. Более редко используют седиментацию в жидкости — до 200 мкм и отдувку или седиментацию в газе — до 200 мкм. Для часТиц размером более 100 мкм очень удобно по нашему опыту ие-пользовать инструментальные микроскопы, которые позволяют определять не только средний диаметр, но и другие геометрические размеры отдельных зерен, необходимые для оценки их коэффициентов формы. Для определения дисперсного состава доменного кокса применяют сита большого размера с квадрат- [c.52]

    На вязкость смазок наряду с вязкостью дисперсионной среды влияют природа й концентрация загустителя (с увеличением концентрации и степени дисперсности загустителя вязкость смазки повышается), технология приготовления смазок и другие факторы, определяющие размер и форму частиц загустителя. Для определения вязкости смазок используют капиллярные (АКВ-2, АКВ-4) и ротационные (ПВР-1) вискозиметры. [c.360]

    Для грубодисперсных систем (с размером минимальных частиц более 40—50 мкм) применяется ситовой анализ. Суспензия фильтруется, осадок высушивается и рассеивается по фракциям через специальный набор сит. Для систем, содержащих частицы с размером менее 40 мкм, применяются другие методы анализа. Наиболее простой и часто применяемый на практике микроскопический метод состоит в том, что исследуемая суспензия рассматривается под микроскопом. В большинстве случаев этот анализ проводят для качественного определения степени полидисперсности суспензии (предельных размеров частиц), формы частиц, а также степени агрегации частиц. Иногда делают количественный дисперсный анализ, подсчитывая число частиц каждого из наблюдаемых в микроскоп размеров с последующим построением кривых распределения частиц по размерам. [c.195]

    Рассеяние света. Одним из основных преимуществ оптических методов определения размеров частиц является то, что взаимодействие излучения с частицами не меняет структуры системы, т. е. дисперсная с[1стема остается прежней (за исключением тех случаев, когда происходят фотохимические реакции). К числу наиболее перспективных относится метод фотокорреляционной спектроскопии [133, 134]. Причиной светорассеяния является наличие оптических неоднородностей в среде. Такие среды называют мутными. В основе теории рассеяния света в мутных средах лежат следующие предположения 1) размер частиц много меньше длины волны света (/ Д 0,1) 2) не происходит поглощения (раствор не окрашен) 3) форма частиц близка к сферической 4) концентрация частиц мала, так что не происходит интерференции пучков, рассеянных различными частица- [c.94]

    Комбинируя определение скорости седиментации с определением седиментационного равновесия, можно найти и кривую распределения частиц, если центрифугированию подвергается поли-дисперсная система. Сравнение результатов седиментации в ультрацентрифуге по обоим методам позволяет также судить и о форме частиц. [c.80]

    Дисперсность и форма частиц оказывают либо непосредственное влияние на скорость фильтрования, либо влияют через степень агрегации частиц и пористость осадка. Поэтому каждое исследование суспензии рекомендуется начинать с определения размеров и формы частиц. В зависимости от цели исследования и дисперсности системы проводится качественный или количественный дисперсный анализ. [c.195]

    Изучение рассеяния света важно для суждения о величине и форме частиц коллоидной дисперсности, которые слишком малы для непосредственного исследования их с помощью обычного микроскопа. На явлении рассеяния света основан ряд методов определения размера и формы частиц с использованием ультрамикроскопа, фотоэлектроколориметра, нефелометра и поляриметра. В ультрамикроскопе каждая частица обнаруживается в отдельности в виде светящейся точки или системы дифракционных колец. В остальных методах величина частицы оценивается на основании измерений интенсивности светового потока и степени поляризации в различных направлениях при рассеянии света в мутной среде. В совокупности эти методы дают возможность составить более или менее ясное представление и о форме частиц. [c.30]

    При определении влаги в сыпучих веществах методом диэлектрометрии на результаты определения очень сильно влияет форма частиц и их дисперсный состав. При более точных измерениях ис- [c.283]

    Исследование оптических свойств дисперсных систем имеет большое значение для изучения их структуры, определения размеров и формы частиц, а также концентрации. При этом оптические методы охватывают область дисперсности, лежащую за пределами видимости оптического микроскопа. [c.37]

    Форма зерен. Порошки и вообще гранулированные твёрдые тела состоят из частиц (зерен), отличающихся даже в пределах одной порции препарата в весьма широких пределах по размеру и по форме. Это создает значительные трудности при определении свойств и общей поверхности порошкообразных материалов. Последняя представляет собой сумму поверхностей, частиц порошка поверхность отдельной частицы зависит от ее формы и величины. В общем форма частиц порошка зависит от кристаллохимических особенностей данного вещества и способа его получения. Форма частиц может быть определена только непосредственным наблюдением, это тем сложнее, чем выше дисперсность порошка, так как требует специальных приборов (оптические и электронные мнкро- > скопы), а также вследствие необходимости (но невозможности) ориентировать зерна так, чтобы наблюдать и измерять их в разных проекциях. Обычно при микроскопических наблюдениях ограннчи- [c.291]

    Так, выделяют определенный оптический объем Vo, в котором подсчитывают число частиц п зная массовую концентрацию частиц с и число их в единице объема v, находят объем одной часты-цы V. V = /vd = Vo/nd, где d — плотность дисперсной фазы. Для кубической и сферической форм частиц можно вычислить длину ребра l = v и радиус г = - 3и/4я. [c.42]

    Наряду с оптическими методами для исследования дисперсных систем используются и рентгеновские методы, отличие которых от оптических заключается в малой длине волны рентгеновского излучения по сравнению с размером частиц дисперсной фазы. В основном рентгеновские методы используются для изучения внутренней структуры частиц дисперсной фазы (кристалличности, упаковки молекул). Возможно и определение размеров частиц, основанное на анализе формы дифракционных линий на рентгенограмме при дифракции рентгеновских лучей на малых кристаллах образуются размытые дифракционные максимумы, по ширине которых можно оценить размер частиц (точнее говоря, областей совершенной кристаллической решетки). Аморфные частицы, как известно, не дают дифракционных максимумов оценка размеров таких частиц может быть проведена с помощью анализа диффузного рассеяния рентгеновских лучей возле первичного пучка (так называемое малоугловое рассеяние). Теория этого метода определения размера аморфных частиц имеет общие черты с теорией рассеяния света большими частицами. [c.172]

    При удалении дисперсионной среды (третья стадия процесса) появляются прочные фазовые контакты, при этом тиксотропные св-ва теряются и мех. разрушения структуры становятся необратимыми. При высушивании гель превращ. в твердое тонкопористое тело (ксерогель) с конденса-ционно-кристаллизац. структурой. В процессе сушки может происходить заметное уплотнение геля и изменение его структуры. Разработаны способы сушки, уменьшающие этот эффект и обеспечивающие получение материалов с высокой открытой пористостью. Благодаря высокой дисперсности ксерогелей (размер частиц 10 -10 м) путем формования и спекания производят прочные, плотные изделия с определенной геом. формой из тугоплавких материалов, напр, из оксидов, карбидов и нитридов, причем т-ры спекания на 100-300 °С ниже, чем при использовании методов порошковой технологии (см. Порошковая металлургия). [c.174]

    ОПРЕДЕЛЕНИЕ ДИСПЕРСНОСТИ И ФОРМЫ ЧАСТИЦ [c.195]

    В заключение укажем на некоторые обстоятельства, связанные с использованием характеристических функций 9 у), ф [9 (г/) . Рассчитанные на их основе кинетические кривые соответствуют таким процессам, которые протекают в условиях, отличающихся от условий получения характеристической функции только концентрационной обстановкой в жидкой фазе. Все остальное (природа и дисперсность пористых частиц, природа извлекающей жидкости, ее температура) должно быть таким же, как и в опытах, на основе которых получена характеристическая функция. Если процесс извлечения лимитируется внутренней диффузией, то разница в гидродинамике не влияет на корректность преобразования. Если внешнедиффузионный перенос играет определенную роль, то полученные кривые кинетики соответствуют той же гидродинамической обстановке, которая имела место в опытах по определению функций 0, ф. В некоторых случаях целесообразно представить характеристическую функцию в форме уравнения и последующие операции выполнять аналитически. [c.122]

    Моделирование проводилось в два этапа. Первоначально исследовалось влияние слоя на скорость циркуляции жидкости в нем. С использованием методов планирования машинного эксперимента была определена наиболее рациональная форма аппарата и оптимальные соотношения его размеров (см. рис. 3.10). При этом руководствовались необходимостью достижения наибольшей интенсивности и циркуляции жидкости в аппарате. На втором этапе с помощью ЭВМ исследовались закономерности распределения дисперсной фазы по объему слоя (рис. 3.12). Полученные результаты расчетов хорошо согласуются с данными эксперимента 21]. Проводилось также определение вероятности попадания частиц различных размеров в выбранную контрольную область (см. рис. 2.9) при скорости сплошной фазы = 0,2 м/с. Ниже приводятся результаты расчетов и данные экспериментальных исследований на модельном аппарате объемом около 0,15 м и диаметром 0,6 м в максимальном сечении методом отбора проб с последующим анализом  [c.177]

    При свободлой засыпке в аппарат зернистого материала его частицы получают произвольную упаковку, плотность которой зависит от гранулометрического состава, дисперсности, формы частиц, вида засыпки и некоторых других факторов. Вследствие этого слой получает определенную структуру, одной из характеристик которой является коэффициент плотности укладки К, определяемый по уравнению [c.77]

    Представляется интересным изучение размеров и формы асфальте-новых частиц, диспергированных в различных средах. Одним из эффективных методов определения размеров частиц в дисперсных средах является метод малоуглового рассеяния рентгеновских лучей (МУР). Метод дает большую информацию о размерах и форме частиц, их ассоциации и расположении. Малоугловое рассеяние обратнопропорционально физическим размерам неоднородностей и не зависит от внутреннего строения вещества, от расположения атомов в молекулах. [c.99]

    Режимы движения фаз в колонных аппаратах чрезвычайно многообразны. Знание закономерностей поведения фаз в каждом режиме и пределов изменения гидродинамических параметров, в которых существует тот или иной режим, соверщенно необходимо при правильном определении условий проведб йя химических и тепло-массообменных процессов. Многообразие режимов движения фаз в аппаратах колонного типа обусловлено многими факторами в частности, многообразием участвующих в движении сред (твердые, жидкие и газообразные), многообразием величин и направлений скоростей фаз, различными условиями ввода и вывода фаз, возможностью возникновения различного рода неустойчивостей в двухфазном потоке, возможностью протекания процессов дробления и коагуляции частиц, а также влиянием поверхностно-активных веществ и различных примесей на поведение капель и пузырей. Однако при всем многообразии различного вида течений, встречающихся в колонных аппаратах, можно вьщелить определенный класс дисперсных потоков, которые имеют ограниченное число установившихся режимов, а поведение фаз в этих режимах определяется общими для всех систем закономерностями. Такие потоки можно назвать идеальными. Они существуют при скоростях движения фаз, сравнимых со скоростью их относительного движения. При этом частицы распределены достаточно равномерно по сечению аппарата если и существуют градиенты концентрации дисперсной фазы, то они имеют конечную величину. Это означает, что концентрация частиц в среднем меняется от точки к точке непрерывным образом. Форма частиц близка к сферической, а их размер не слишком отличается от среднего размера частиц в потоке. [c.86]

    В курсе коллоидной химии принято рассматривать только те оптические методы, которые используются в дисперсионном анализе (анализе дисперсности) для определения размера и формы частиц, удельной поверхностп, концентрации дисперсной фазы. К зтнм методам относятся световая и электронная микроскопия, методы, основанные на рассеянии лучей, двойном лучепреломлении и др. [c.247]

    Тпксотропия — явление довольно распространенное. Оно наблюдается в золях V2O5, WO3, РегОз, в различных суспензиях бентонита, в растворах вируса табачной мозаики, миозина. Причем тиксот-ропныегели легче всего образуются у золей, обладающих асимметричным строением частиц (например, палочкообразной формы). Тиксотропные структуры возникают лишь при определенных концентрациях коллоидных частиц и электролитов. Для обратимого (тиксотропного) застудневания требуется определенное значение дзета-потенциала, лежащее выше критического. В этом случае заряд коллоидных частиц хотя и понижен, но не в такой степени, что- бы начался процесс коагуляции. В этих условиях уже становятся заметными силы взаимодействия между отдельными частицами дис- персной фазы, они образуют своеобразную сетку, каркас. При сильном встряхивании связь между частицами дисперсной фазы нарушается — тиксотропный гель переходит в золь. В состоянии покоя связи в результате соударения частиц при броуновском движении восстанавливаются, золь вновь переходит в тиксотропный гель и т. д. [c.379]

    Ярким примером коагуляционных структур могут служить глинистые суспензии [8—37]. Жидкообразная хорошо текучая глинистая суспензия, налитая в пробирку и заструктурированная в течение определенного времени, приобретает достаточную прочность и после переворачивания пробирки вверх дном не выливается. Несколькими механическими встряхиваниями полученную систему опять можно перевести в жидкообразное состояние с минимальной прочностью. Такой процесс разрушения и восстановления структуры можно осуществлять до бесконечности. Описанные явления называются тиксотропией, и для их проявления должны быть соблюдены следующие условия не слишком высокая прочность структуры и ее способность к значительным остаточным деформациям наличие коллоидной фракции частиц (1—100 мкм), интенсивно участвующих в тепловом движении большое число частиц дисперсной фазы в единице объема среды вытянутая форма частиц высокая степень лиофильности поверхности частиц. [c.15]


Смотреть страницы где упоминается термин Определение дисперсности и формы частиц: [c.27]    [c.42]    [c.208]    [c.519]    [c.180]    [c.7]    [c.230]    [c.199]   
Смотреть главы в:

Разделение суспензий в химической промышленности -> Определение дисперсности и формы частиц




ПОИСК





Смотрите так же термины и статьи:

Дисперсность и форма частиц

Дисперсные частицы

Определение форма

Частица форма, определение

Частицы форма



© 2025 chem21.info Реклама на сайте