Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

действие иа рибосомы

Рис. 27. Схема действия рибосомы Спо А. С. Спирину) Рис. 27. <a href="/info/103853">Схема действия</a> рибосомы Спо А. С. Спирину)

    Измерение спектров дисперсии оптического вращения (ДОВ) и кругового дихроизма (КД) получило широкое распространение как метод конформационного анализа оптически активных соединений. Особенно методы ДОВ и КД используются в органической химии, биохимии, энзимологии и молекулярной биологии. Данными методами исследуются белки, аминокислоты, нуклеиновые кислоты, стероиды, углеводы и полисахариды, вирусы, митохондрии, рибосомы, фармакологические средства, синтетические полимеры, координационные соединения, неорганические и редкоземельные комплексы, кристаллы, суопензии и пленки и т. п. и решаются следующие задачи 1) определение по эмпирическим пра вилам конформации и ее изменений под действием различных физико-химических воздействий 2) изучение механизма и кинетики химических реакций (особенно ферментативных) 3) получение стереохимических характеристик 4) измерение концентраций оптически активных веществ 5) определение спиральности макромолекул 6) получение электронных характеристик молекул 7) исследование влияния низких температур на конформацию соединений 8) влияние фазовых переходов типа твердое тело — жидкость — газ на изменение структуры. [c.32]

    Много внимания вопросам ориентации на опыт живой природы уделяет Н. Н. Семенов. Здесь есть смысл привести хотя бы часть характеристики, которую дает он химическому производству живой природы Природа при зарождении и эволюции новых организмов создала молекулярные машины совершенно исключительной точности, быстроты действия и необычайного совершенства. Вспомним, например, вскрытый недавно химиками и биологами синтез больших белковых молекул со строгим чередованием аминокислот. В клетках имеются субмикроскопические сборные заводики — рибосомы, включающие в себя рибонуклеиновые кислоты как сборочные машины . Каждый сорт коротких молекул транспортных рибонуклеиновых кислот захватывает один определенный вид аминокислот, несет их в рибосому и ставит каждую аминокислоту на свое место согласно информации, содержащейся в молекулах рибонуклеиновых кислот. Тут же к аминокислотам подходят ката-.тизаторы-ферменты и осуществляют сшивку аминокислот в одну молекулу белка со строгим чередованием. Это настоящий квалифицированный завод, строящий молекулы по плану, выработанному природой в процессе эволюции [15, с. 192—193]. [c.173]

    Сочетание УАА и УАГ не соответствует какой-либо определенной аминокислоте. Это так называемые бессмысленные кодоны . Однако они не вполне лишены смысла. Синтез белка останавливается, когда работа рибосомного аппарата доходит до бессмысленного кодона. Следовательно, они в какой-то степени могут регулировать длину образующихся полипептидных цепей, хотя не вполне ясно, играют ли они эту роль в ходе нормального синтеза белка. Вопрос о прекращении роста цепи РНК важен, так как от механизма, прекращающего синтез на определенном звене, зависит и функция синтезируемого белка. Имеющиеся данные говорят как будто в пользу предположения, что на молекуле м-РНК все же имеются сочетания нуклеотидов, сигнализирующие о начале и конце синтеза цепи. Процесс считывания нормального кода, т.е. синтез нормального белка, может претерпеть нарушения в результате, например, действия некоторых лекарственных веществ (стрептомицин) или под влиянием мутаций. Лекарственные вещества изменяют состояние самой рибосомы, что нарушает ход синтеза. Мутации выражаются в замене правильного триплета каким-либо иным, что приводит к росту числа ошибок при считывании генетического кода. [c.394]


    На рис. 27 показана, по А. С. Спирину, схема действия рибосомы. Фермент, осуществляющий соединение аминокислотных остатков, действует очень активно, так что цепочки 150 аминокислот получаются за 1,5—2 мин. ДНК не только организует синтез белка и определяет специфичность его, т. е. чередование аминокислотных остатков, но она еще является и частью системы, регулирующей синтез. В цепи ДНК имеются участки, которые контролируют образование особых веществ, называемых репрессорами. Репрессоры, насколько можно судить по неполным данным, представляют собой белки, способные блокировать ген и прекращать образование мРНК. Однако как только появляется вещество, подлежащее химической переработке (метаболит), репрессор связывается с ним, освобождает занятый им участок ДНК, и синтез соответствующих белков возобновляется. Согласованность действий частей этого механизма проявляется в том, что таким путем синтезируются именно те ферментные белки, которые нужны для переработки данного метаболита. [c.191]

    Синтез РНК связан с количеством транспортной т-РНК, т. е. РНК переносящей аминокислоты. Если концентрация молекул т-РНК, не имеющих нагрузки, возрастает, то синтез РНК задерживается. Действие этого поразительного механизма уже само по себе указывает на постоянную пространственную близость всех деталей аппарата, синтезирующего белок. В действительности так оно и есть, ведь синтез белка протекает в рибосомах, т. е. в организованных частицах клетки. Число структур, образуемых мембранами, не исчерпывается, конечно, митохондриями и рибосомами. Ядро клетки, лизосомы, аппарат Гольджи и другие органел-лы также построены из мембран они же послужили и материалом для создания нейронов — элементов нервной системы, в том числе и мозга, выполняющего высшие кодовые функции. [c.395]

    Некоторая химическая перестройка (процессинг) новообразованных пептидов, вероятно, идет уже в цитоплазме [29], но частично она происходит после сегрегации секретируемых белков в цистернах (мик-росомных полостях) эндоплазматического ретикулума [30]. Полагают, что рибосомы, на которых синтезируются эти белки, расположены с дитоплазматической стороны мембраны эндоплазматического ретикулума и что новообразованные пептидные цепи проталкиваются через мембрану в эти цистерны. Там могут действовать различные модифицирующие ферменты. [c.94]

    В основе действия mh fhx известных в настот1щее время наиболее эффективных антибиотиков лежит блокирование синтеза белка на рибосомах. Высокая эффективность этих замечательных лекарственных препаратов объясняется тем, что они подавляют синтез белка бактериальными 705-рибосомами, не влияя при этом на рибосомы эукариотических клеток. В других случаях избирательная токсичность антибиотиков обусловлена значительно более высокой проницаемостью бактериальных мембран по сравнению с мембранами животных клеток. [c.240]

    Список антибиотиков, действующих на уровне рибосом, весьма велик [115, 116]. Он включает, в частности, соединения, сыгравшие важную роль при выяснении механизма синтеза белка. Хотя аминоглико-зидный антибиотик стрептомицин (дополнение 12-А), неомицины и ка-намицин содержат в своем составе одну общую структурную группу, тем не менее все они связываются с рибосомами по-разному. В результате своеобразного действия стрептомицина рибосомы начинают неправильно считывать код. При этом неправильно считывается главным образом первое основание кодона. Так, например, если использовать в качестве информационной РНК поли(и), то вместо обычного полифенилаланина образуется продукт, содержащий 40% изолейцина. [c.240]

    Дифтерийный токсин представляет собой белок с мол. весом 62 ООО. Его минимальная летальная доза для морской свинки составляет всего лишь 0,16 мг/кг. Исследования, проведенные на культуре клеток, показали, что токсин блокирует включение аминокислот в белки в результате инактивации-фактора элонгации EF-2, необходимого для транслокацин в рибосомах млекопитающих. Токсин действует аналогично ферменту, переносящему ADP-рибозильную группу от NAD" " к фактору EF-2  [c.305]

    Л. активен против многих грамположит. и грамотрицат. микробов, риккетсий, спирохет, хламидий. Антибактериальное действие его весьма специфично и связано с нарушением белкового синтеза на стадии переноса аминокислот от ами-ноацилтранспортной РНК на рибосомы. Небольшие изменения в структуре молекулы Л. ведут к уменьшению или полной потере его активности. с Е Есипов [c.580]

    Ф. к. активна гл. обр. в отношении фамположит. микроорганизмов (стафилококки, менингококки, гонококки). Она подавляет гидролиз гуанозинтрифосфата, препятствуя диссоциации образующегося при этом комплекса, включающего рибосомы, G-фактор и гуанозиццифосфат. Ф. к. может оказывать противовирусное действие. Важная особенность Ф. к. и ее солей - способность проникать в костную ткань, что позволяет лечить воспалит, процессы в областях организ1ь<а, малодоступных для др. лек. ср-в. [c.210]

    К числу гидролаз относятся ацетилхолинэстераза нервных клеток (дополнение 7-Б) и большое число пищеварительных фермеитов. Среди последних наиболее изучены протеиназы и пептидазы. Пепсин, трипсин, химотрипсин и карбоксипептидаза являются высокоэффективными катализаторами расщепления белков. Все оии секретируются в виде неактивных проферментов (гл. 6, разд. Ж,2), или иначе, зимогенов [26]. После синтеза на рибосомах эндоплазматического ретикулума особых секреторных клеток проферменты упаковываются в виде зимогеновых гранул, которые затем мигрируют к поверхности клетки и секретируются в окружающую среду. Пепсиноген является компонентом желудочного сока, в то время как химотрипсиноген, трипсиноген и другие панкреатические проферменты через проток поджелудочной железы попадают в тонкую кишку. Достигнув места своего действия, зимогены превращаются в активные ферменты под действием молекулы другого фермента, отсекающей от предшественника фрагмент (иногда довольно большой) полипептидной цепи [25]. [c.104]


    На специфическом подавлении отдельных стадий биосинтеза белка основано действие ряда антибиотиков (разд. 2.3.5). Так, актиномицин интер-коляцией и рифамицин селективным подавлением РНК-полимеразы нарушают процесс транскрипции. Хлорамфеникол нарушает трансляцию, блокируя реакцию переноса пептидила в рибосоме. Стрептомицин ассоциирует с 30 8-субъединицей рибосомы и ведет к ошибкам в переносе, а очень похожий на аминоацильный конец тРНК пуромицин вызывает преждевременный обрыв синтезируемой цепи. [c.398]

    Схема всех стадий процесса трансляции приведена на рис. 24. Показаны условия, необходимые для начала инициации, формирование инициирующего комплекса, появление участков (сайтов) Р и А и протекание элонгации, затем - перемещение рибосомы вдоль мРНК (транслокация), действие пеп-тидил-трансферазы, катализирующей образование пептидной связи, и, наконец, терминация процесса. После окончания биосинтеза полипептидной [c.58]

    В процессе белкового синтеза рибосома каждый раз связана лишь с ограниченным отрезком матричного полинуклеотида (мРНК). Так как отрезки матричного полинуклеотида, непосредственно связанные с рибосомами, оказьшаются защищенными от действия нуклеаз, они могут быть выделены после нуклеазной обработки комплексов рибосома матрица. Длина таких отрезков была найдена равной от 20 до 60 нуклеотидных остатков. В то же время, длина кодирующей последовательности мРНК обычно превосходит 300 нуклеотидных остатков. Отсюда давно стало очевидно, что для считывания всей кодирующей последовательности мРНК рибосома должна последовательно пройти (или, что то же самое, последовательно протащить через себя) матрицу, от 5 -концевой части кодирующей последовательности до ее З -концевой части. Другими словами, рибосома должна работать как лентопротяжный механизм. [c.54]

    Когда рибосома достигнет терминирующего кодона мРНК, синтез полипептида прекращается. В присутствии терминирующего кодона рибосома не связывает какой-либо аминоацил-тРНК, а вместо них в дело вступают специальные белки, называемые факторами терминации. Под их действием синтезированный полипептид освобождается из рибосомы. Эта стадия называется терминацией трансляции. После терминации рибосома может либо сойти с мРНК, либо продолжать скользить вдоль нее, не транслируя. [c.56]

    Большая (60S) субчастица эукариотической 80S рибосомы содержит существенно более крупную РНК, чем бактериальная 23S РНК. Эта эукариотическая РНК обозначается как 26S или 28S РНК и имеет молекулярную массу от (1,2—1,3) 10 дальтон у грибов и высших растений до (1,6—1,7) 10 дальтон у птиц и млекопитающих. Соответственно, цепь 26S РНК Sa haromy es состот из 3392—3393 нуклеотидных остатков, а цепь 28S РНК крысы —из 4700—4800 нуклеотидных остатков. С 26S—28S РНК тесно ассоциирована низкомолекулярная 5,8S РНК, состоящая из 160 нуклеотидных остатков и, как уже указывалось, представляющая собой гомолог 5 -концевой последовательности бактериальной 23S РНК диссоциация 5,8S РНК от 28S РНК достигается лишь в результате разворачивания под действием температуры или денатурирующих агентов. [c.70]

    В отличие от вирусных нуклеопротеидов, в рибосоме РНК не покрыта сплошной белковой оболочкой. Давно было показано, что значительные участки рибосомной РНК в рибосоме экспонированы и вполне доступны для действия внешних агентов — например, нуклеаз. Это принщ1пиальное отличие от вирусных частиц понятно, поскольку рибосома представляет собой рабочую функционируюшую структуру, где РНК должна активно участвовать во взаимодействиях с внешними факторами, а не быть хранилищем генетической информации, требующим защиты. [c.104]

    Хотя тетрациклины не действуют на эукариотические клетки из-за непроницаемости их мембран для антибиотика, в эукариотических бесклеточных системах они тоже оказываются сильными ингибиторами, подавляя связывание аминоацил-тРНК с 80S рибосомами. [c.166]

    Имеется другая группа антибиотиков, которые воздействуют на связывание аминоацил-тРНК с А-участком рибосомы, но оказывают эффект совсем иного рода. Это так называемые аминогликозидные антибиотики, к которым относятся стрептомицин (рис. 97), а также неомицин, канамицин и некоторые другие. Антибиотики этой группы способствуют удержанию на рибосоме аминоацил-тРНК, не соответствующих кодону, установленному в А-участке рибосомы. В результате такого ложного кодирования синтезируются неправильные полипептиды, с большим количеством ошибок, что и приводит к цитотоксическому (бактерицидному) эффекту на клетки. Стрептомицин действует специфически на бактериальные 70S рибосомы, в то время как канамицин и неомицин могут индуцировать ложное кодирование также и на эукариотических 80S рибосомах. Главным местом связывания антибиотиков с рибосомой является, по-видимому, малая (30S или 40S) субчастица, хотя эффект зависит от взаимодействия обеих субчастиц и проявляется только на полной (70S или 80S) рибосоме. [c.168]

    Существует много специфических ингибиторов пептидилтрансферазной реакции, катализируемой как прокариотическими, так и эукариотическими рибосомами. Все они, как и можно было ожидать, действуют на большую (50S или 60S соответственно) субчастицу рибосомы и имеют к ней большее или меньшее сродство. Многие классические антибиотики, используемые для лечения бактериальных инфекций,— ингибиторы пептидилтрансферазы прокариотической 70S рибосомы. [c.188]

    Хлорамфеникол. Самый известный ингибитор пептидилтрансферазы 70S рибосомы это, пожалуй, хлорамфеникол (хлоромицет ин) (рис. 103). Он является бактериостатическим антибиотиком широкого спектра действия. На эукариотические 80S рибосомы он не действует. В химическом отношении он представляет собой N-блокированный аминоспирт с ароматическим радикалом. Дихлор-метильная группа не обязательна для активности она может быть заменена на многие умеренно массивные радикалы. Ароматическая [c.188]

    Хлорамфеникол связывается с 70S рибосомой или с ее изолированной 50S субчастицей довольно нестабильно и легко может быть отмыт. Соответственно, действие антибиотика обратимо. По-видимому, он связывается с участком пептидилтрансферазного центра, ответственным за взаимодействие с акцепторным субстратом во всяком случае, пуромицин и 3 -концевые фрагменты [c.189]

    Линкомицин. Этот антибиотик (рис. 103) также действует только на бактериальные 70S рибосомы, но не на эукариотические 80S рибосомы. Место связывания антибиотика — пептидилтрансферазный центр на 50S субчастице. Линкомицин конкурирует с хлорамфениколом за связывание с рибосомой. По-видимому, он ингибирует взаимодействие акцепторного субстрата с пептидилтрансферазным центром по конкурентному механизму. Химическая структура линкомицина, как и хлорамфеникола, характеризуется наличием амидной связи и группы, имитирующей пептидную группу, смежную с С -атомом аминокислотного остатка (только вместо кислоты здесь опять спирт). [c.190]

    Сравнивая медленную бесфакторную транслокацию с быстрой EF-G GTP-катализируемой транслокацией, важно отметить, что фактор, по-видимому, не снижает заметным образом тепловую энергию активации процесса это наводит на мысль, что здесь катализ имеет преимущественно энтропийную природу. Ингибиторный анализ также показывает, что фактор не создает нового реакционного пути, идущего через промежуточные стадии в обход высокого активационного барьера, как это делает обычный энтальпийный катализатор самые различные специфические ингибиторы транслокации (виомицин, спектиномицин, эритромицин, неомицин, канамицин, гентамицин, гигромицин В) действуют как на энзиматический, так и неэнзиматический процесс, указывая на существование одинакового транслокационного механизма, с одними и теми же мишенями в обоих случаях. Следовательно, фактор элонгации катализирует процесс, скорее всего, путем создания лучших пространственных условий в рибосоме для того же самого, присущего рибосоме как таковой, транслокационного пути. Одним из способов сделать это могла бы быть простая фиксация одного из термически флуктуирующих под-состояний рибосомы, которое было бы благоприятно для транслокации. Такой фиксирующий или ориентирующий эффект присоединения EF-G как крупного дополнительного лиганда рибрсомы кажется вероятным. [c.204]

    Имеется целый рад белковых токсинов бактериального и растительного происхождения, которые являются мощными ингибиторами эукариотической (животной) белоксинтезирующей системы. Эти токсины блокируют элонгационную фазу трансляции. Все они обладают каталитическим (энзиматическим) механизмом действия. Мишенью их действия оказалась стадия транслокации элонгационного цикла эукариотической рибосомы. Наиболее изученным примером является дифтерийный токсин. [c.214]


Смотреть страницы где упоминается термин действие иа рибосомы: [c.111]    [c.215]    [c.236]    [c.240]    [c.517]    [c.104]    [c.302]    [c.602]    [c.622]    [c.122]    [c.136]    [c.164]    [c.165]    [c.166]    [c.166]    [c.166]    [c.168]    [c.180]    [c.190]    [c.200]    [c.216]   
Биохимия Том 3 (1980) -- [ c.240 , c.241 ]




ПОИСК





Смотрите так же термины и статьи:

Рибосомы



© 2025 chem21.info Реклама на сайте