Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Бензол электронный спектр

    В работе необходимо на спектрографе ИСП-28 снять спектры поглощения паров бензола, раствора бензола в метаноле или в этаноле и в гексане. Все спектры снимаются в ультрафиолетовой части спектра. Полученные спектры следует сопоставить визуально и сделать заключение относительно влияния растворителя на электронный спектр поглощения. [c.71]


    Исследование магнитных свойств и электронных спектров ароматических и сопряженных непредельных структур позволяет заключить, что часть электронов в таких молекулах имеет особенно высокую подвижность, резко отличаясь от остальных электронов в этой же молекуле. Например, валентные связи в бензоле образуются 30 электронами. Из них подвижными оказываются шесть л-электронов, как о том свидетельствует аномально высокая диамагнитная восприимчивость бензола в направлении, перпендикулярном к плоскости кольца. Последнее можно объяснить только тем, что эти шесть л-электронов способны циркулировать по бензольному кольцу и под воздействием электрического и магнитного полей (например, индуцированных соседней полярной молекулой) перемещаться вдоль всей длины молекулы. Это значит, что если бензольное кольцо попадает в магнитное поле, то оно будет быстро ориентировано. Диамагнитная анизотропия аренов существенно возрастает с увеличением количества колец, особенно конденсированных. Так, молярная диамагнитная восприимчивость () , 10" ) бензола составляет 54, нафталина — 114, антрацена — 183, фенан-трена — 223. Следовательно, с увеличением числа конденсированных циклов в аренах их склонность к ориентационному взаимодей- [c.132]

    Меньше всего эти взаимодействия проявляются при растворении порфиринов-лигандов в системах бензол-имидазол и четыреххлористый углерод-имидазол (табл. 6.2.1, 6.2.3). Здесь энтальпии переноса из смешанного в индивидуальный растворитель имеют слабо экзо-термичные, близкие к нулевым, значения. Изменений в электронных спектрах поглощения в этом случае также практически не наблюдается (табл. 6.2.4). [c.320]

    В атласе не приводятся спектры некоторых ароматических углеводородов, применяющихся в промышленности СК в качестве растворителей или для других целей (например, бензол, толуол и др.), так как их спектры можно найти в соответствующем атласе [1]. Описанные в литературе общие закономерности электронных спектров [2] и экспериментальная техника [3] здесь не излагаются.. [c.5]

    Свойства бензола уникальны, он является единственной моно-циклической ненасыщенной системой, за исключением его шести-замещенных производных, в которой углы между связями составляют точно 120 без напряжения связей или вторжения водородов в полость кольца. ИК- и КР-спектры бензола подтверждают симметричную Обй-структуру [23]. Так, в газообразном состоянии бензол имеет в ИК-спектре только четыре разрешенные основные частоты, а в КР-спектре — семь разрешенных частот. Получение дейтерированных бензолов позволяет провести отнесение полос к различным колебаниям, а также рассчитать силовые константы деформаций кольца. Бензольное кольцо значительно легче претерпевает искажение формы с выходом из плоскости, чем в плоскости, момент кручения составляет только одну пятую момента этилена. Анализ электронных спектров (см. разд. 2.4.3.4) показывает, что бензол сохраняет плоскую конфигурацию и в возбужденном состоянии [28]. [c.293]


Рис. 2.20. Электронные спектры поглощения бензола Рис. 2.20. <a href="/info/427508">Электронные спектры поглощения</a> бензола
    Энергетика МО бензола отражается в электронных спектрах поглощения (рис. 2.20). Электронный переход между граничными орбиталями [c.76]

Таблица 2.5. Электронные спектры некоторых дизамещенных производных бензола общей формулы ХС НД Таблица 2.5. <a href="/info/3512">Электронные спектры</a> некоторых дизамещенных <a href="/info/92624">производных бензола</a> <a href="/info/510522">общей</a> формулы ХС НД
Рис. 69. Электронный спектр поглощения бензола в растворе циклогексана Рис. 69. <a href="/info/1219700">Электронный спектр поглощения бензола</a> в растворе циклогексана
Таблица 34. Характерное поглощение в электронных спектрах бензола и фенола в растворе гексана Таблица 34. Характерное поглощение в электронных спектрах бензола и фенола в растворе гексана
Таблица 52. Электронные спектры поглощения и ПМР бензола и пятичленных гетероциклических соединений (в гексане) Таблица 52. <a href="/info/427508">Электронные спектры поглощения</a> и ПМР бензола и <a href="/info/20730">пятичленных гетероциклических соединений</a> (в гексане)
Рис. 12.2. Электронный спектр поглощения нитрозо-бензола Рис. 12.2. <a href="/info/427508">Электронный спектр поглощения</a> нитрозо-бензола
    Ароматические соединения имеют замкнутую сопряженную систему, в которой возможны дополнительные электронные переходы. Соответственно в электронных спектрах этих соединений наблюдаются дополнительные полосы поглощения. Например, в УФ-спектре бензола (рис. 12.5) име- [c.520]

    Исследование электронных спектров поглощения растворов иода в бензоле и индифферентном растворителе. Для электронного спектра паров иода характерно наличие максимумов поглощения в ультрафиолетовой области (Я=180 ммк) и в видимой области (Л=520 ммк, К=820). [c.115]

    Покажем теперь, как можно истолковать с помощью приведенных результатов электронные спектры поглощения (/г,и)-парациклофанов (см. рис. 1). Спектры этих молекул для тг > 4 очень похожи на спектры молекул бензола, сдвинутые в сторону длинных волн из-за наличия алифатических цепей, играющих роль заместителей (аналогично, например, с молекулой и-ксилола). Поэтому целесообразно сопоставлять теоретически вычисленные сдвиги отдельных полос в спектре ( г, г)-парациклофанов относительно соответствующих полос в изолированной молекуле бензола с экспериментально найденными сдвигами относительно соответствующих полос в спектре (ге,ге)-парациклофана с большим п (или молекулы с одной открытой алифатической цепью) (рис. 6). Вследствие этого теоретические величины, некоторые из которых приведены на рис. 6 и 7, исправлены на величины сдвига под влиянием заместителей в ядре бензола и под влиянием растворителя. Аналогичные расчеты возможны при сопоставлении с (2,2)- и (3,3)-парациклофанами. [c.50]

    Изменения, претерпеваемые электронным спектром поглощения бензола в результате введения в кольцо алкильного заместителя, происходят в основном из-за смещения в направлении кольца электронов С—Н-связей первого углеродного атома заместителя, непосредственно связанного с бензольным кольцом (явление а — я-сопряжения) [19]. Поэтому длина [c.7]

    ИК-спектры сняты на приборе ИКС-14 в области 3000—3600 см с призмой LiF в диоксане и в области 650—950 m i иа Na l в бензоле. Электронные спектры водных растворов флуоресцеина и тетрабутилфлуоресцеина сняты на приборе СФ-10 в области 400—500 тр,. [c.201]

    I, 2, 4 и 1, 2, 3. Спектры фракций № 3, 4 похожи друг на друга. Основные максимумы поглощения этих фракций и расшифровка индивидуальных углеводородов по электронным спектрам поглощения приведены в табл. 2. Появление плеча 2756—2770 А во фрак-щии № 6 говорит о присутствии тетраметилбензолов типа 1, 2, 4,5.. Максимум поглощения 2728 А во фракции № 9 свидетельству-.ет о присутствии тетраметилбензолов строения 1, 2, 3, 4. Так как максимумы поглощеиия индановых углеводородов в ультрафиолетовой области в большинстве случаев совпадают с длинами волн максимумов алкилбензолов, а интенсивность поглощения инданов лишь в 2—3 раза выше интенсивности поглощения бензолов, то в смеси углеводородов инданы могут быть обнаружены лишь в количествах более 10— 20% от общего количества углеводородов. [c.34]


    Спектр ЯМР толуола (рис. 1, б) также весьма прост он содержит только два пика, поскольку в молекуле толуола имеется два типа атомов водорода. Пик в более слабом поле соответствует сигналу протонов бензольного ядра, а второй пик обусловлен протонами, входящ,ими в метильную группу. Справа на спектре виден пик тетраметнлсилана (ТМС), добавленного в качестве эталона. Как и в случае бензола, электронные и инфракрасные спектры толуола состоят из большого числа полос и не во всех случаях могут быть надежно интерпретированы. [c.8]

    При расчете молекул, содержащих несколько атомов, решение векового уравнения позволяет найти энергетические уровни электронов, разности которых приблизительно определяют частоту электронного спектра. Число таких энергетических уровней сравнительно велико. Если учесть, что оптические переходы возможны не только между основным и возбужденными, но и между двумя возбужденными состояниями, можно ожидать появления большого числа спектральных линий. Однако в спектре даже сравнительно сложных молекул (бензол, хинолин и т. п.) наблюдается всего несколько линий, характерных для -соответствующего я-электронного фрагмента. Например, в спектре бензола отмечается три линии вблизи частоты 3600 см- одна интенсивная и две слабые. Причина этого заключается в том, что далеко не между всеми энергетическими уровнями оптический переход разрешен. Как известно из теории квантовых переходов под влиянием световой волны, вероятность дипольного перехода между уровнями Ея и Ем пропорциональна матричному элементу Окм= < к1г1 м>, значение которого при наличии разной пространственной симметрии функций и Ч м становится равным нулю (см. 7 гл. IV). Если симметрия молекулы нарушается (например, вследствие движения ядер, влияния полей, действующих [c.135]

    Электронные спектры поглощения невозможно описать с помощью метода МОХ. Так, нанример, экспериментальный спектр поглощения бензола состоит из двух слабы.к иолос и одной интенсивной. Расчет по методу Хюккеля приводит к выводу, что в спектре поглощения должно быть одно четырехкратновырождеииое возбужденное состояние. Метод МОХ ие разделяет синглетные и трн-плетные возбужденные состояния, с его помощью можно вычислить только среднюю величину синглетного и триплетного возбуждений. [c.268]

    Осталось определить резонансный интеграл р. Как и в методе МОХ, величину р не удается параметризовать так, чтобы одновременно удовлетворительно рассчитывать свойства основного и возбужденных состояний, например теплоты образования и электронные спектры поглощения. Проиллюстрируем этот факт на примере молекулы бензола. Вследствие высокой симметрии этой молекулы ( )б/ ) коэффициенты в разложении МО по АО можно получить без процедуры самосогласования. Кроме того, все диагональные элементы матрицы плотности Рцц=1, так как бензол является альтернантым углеводородом. Энергии перехода в возбужденные состояния для бензола имеют вид [c.271]

    Важным фактором влияния электронодонорных и алектро-ноакцепторных заместителей на электронный спектр поглощения является снятие запретов по симметрии на вероятность электронных переходов. Напр., у бензола первые два длинноволновых электронных перехода запрещены по симметрии. [c.327]

    Электронные спектры. Бензол имеет очень характерный электронный спектр с интенсивной полосой при 185 нм и слабыми полосами при 200 и 260 нм. Коротковолновая полоса отнесена к разрешенному переходу Aig Eiu, полоса 260 нм — к запрещенному переходу Аи Вги, а полосу 200 нм в настоящее время принято относить за счет перехода A( -> Biu. Неразрешенные переходы наблюдаются в виде слабых полос вследствие смешения с другими разрешенными переходами. Сравнение спектра бензола со спектрами конденсированных полициклических бензоидных систем затруднительно, так как эти системы обладают более низкими симметриями, однако был ряд попыток классификации полос в полициклических системах. Наиболее известны классификации Клара [40], Джойса [41], Кливенса и Платта [42]. Для некоторых типов аннелирования возможно предсказать спектр и сделать заключение о влиянии дальнейшего аннелирования в различных полол<е-ниях. В пределах определенной группы молекул электронный спектр часто является отличным средством для установления характера нарушений в системе, однако он, по-видимому, не может быть полезным как общий критерий для установления ароматичности. [c.297]

    Свойства бензола, самой типичной ароматической системы детально описаны в гл. 2.5. Как соотносятся свойства большой группы аннуленов с 4л-f-2я-электронами со свойствами бензола Исторически первым макроциклическим аннуленом оказался [18]аннулен (12). В кристаллическом состоянии он устойчив, но разлагается в растворе при комнатной температуре, по-видимому, в результате окисления. Он имеет широкий электронный спектр с основным максимумом при 369 нм (е 303000) [13]. Спектр Н-ЯМР зависит от температуры при —70°С в спектре видны два сигнала мультиплет при 6 9,28 (12 Н) и триплет при 6—2,99 млн (6 Н), которые при нагревании расширяются, сливаются и, в конце концов, при 110°С дают острый синглет при 6 5,45 млн [27]. Низкотемпературный спектр, как и следовало ожидать для соединения (12), соответствует двенадцати внешним, неэкранированным протонам и шести внутренним, экранированным протонам. Изменение спектра при повышении температуры указывает, что обмен протонов между внутренним и внешним положением происходит во временной шкале ЯМР достаточно быстро. Такое поведение можно интерпретировать как следствие инверсии трех эквивалентных структур, показанных на схеме (19). Установлено, что способность к флуктуациям структуры является общим свойством макроциклических аннуленов. Химические сдвиги внешних и внутренних протонов в низкотемпературном спектре [18]аннулена указывают на то, что это диатропная молекула. [c.467]

    Электронные спектры бензола были рассмотрены ренее. [c.380]

    Напротив, для пятичленного гетероциклического соединения пиррола (2.29) характерно плоскостное сопряжшие электронной пары атома азота с тг-электронами бутадиеиовой-1,3 системы в результате такого сопряжения образуется находимый для ароматичности секстет тг-электронов. Спектр пиррола резко отличается от спектра бензола. [c.36]

    Электронный спектр поглощения (2,2)-парациклофана уже качественно сильно отличается от спектров (га,и)-парациклофанов с ге = 4. Детальное экспериментальное изучение первого электронного перехода этого соединения в кристаллическом состоянии было осуществлено Роном и Шненом [29], которые с достаточно большой точностью измерили величину расщепления полосы, отвечающей а-полосе изолированной молеку лы бензола, и получили значение 0,43 эв (практически то же значение получается из спектра (2,2)-парациклофана в растворе (см. рис. 1)). [c.51]

    На различия между энергетическими состояниями и, следовательно, внутренней энергии молекул на поверхности адсорбента и в газовой фазе указывает также изменение электронного спектра поглощения во времени. Так, по данным Лефтина и Холла [52], при адсорбции а-метилстирола на алюмосиликатном катализаторе появляется новая полоса поглощения при 400 нм. Появление этой полосы авторы связывают с образованием карбоксильных ионов. При менее специфических взаимодействиях адсорбата с адсорбентом влияние адсорбции на электронные спектры значительно слабее. Исследуя адсорбцию бензола и других ароматических соединений на аэросиле (одна из марок кремнеземов), Киселев и др. 1[53] наблюдали сдвиги полосы от 200 до 300 СМ (около 700 кал/моль) в более длинноволновую область УФ-спектра. [c.428]

    Для ряда моиозамещениых бензолов, адсорбированных на кремневой кислоте из раствора в циклогексане, полосы поглощения были расширены и несколько смещены в коротковолновую область (пшсохромный сдвиг) [13]. Эти сдвиги соответствовали приблизительно 1% от полной энергии перехода и аналогичны сдвигу, наблюдаемому для спектра бензола, адсорбированного из газовой фазы на прозрачном силикагеле [44]. Уширение спектральных полос при адсорбции можно интерпретировать как результат статистического распределения энергетических состояний молекулы в поле полярно" адсорбента. Спектральные сдвиги могут быть следствием образования водородной связи или изменения полярности среды. Так, например, электронный спектр анилина в воде но сравнению со спектром в циклогексане обнаруживает сдвиг в коротковолновую область примерно на 1000 м- [45]. Это можно объяснить образованием водородной связи между водой, действующей как донор протонов, и неподеленными электронами МНг-группы. Образование водородной связи уменьшает взаимодействие между этими двумя /7г-электронами и кольцом и поэтому сдвигает полосу поглощения в коротковолновую область. Повышение кислотности среды при адсорбции анилина на кремневой кислоте приводит к дальнейшему сдвигу в коротковолновую область, обусловленному увеличением протонодонорной способности кремневой кислоты по отношению к протонодонорной способности воды. Предельным случаем для анилина было бы растворение его в кислоте, при котором основной формой, поглощающей свет, является ион анилина, а не молекула анилина. Первоначально неподеленные электроны прочно локализованы в связи N—Н и, следовательно, неспособны к взаи модействию с кольцом. В этом случае спектр возвращается К спек тру бензола. [c.27]

    Электронные спектры поглощения индановых углеводородов, содержащих заместители в бензольном кольце, обладают теми же особенностями, что и спектры аналогичных производных бензола положение и контур по- лосы поглощения индановых углеводородов определяются в основном числом и положением групп в молекуле. В связи с этим оказывается возможным I определить структуру индановых углеводородов путем сравнения их спе- ктров с электронными спектрами поглощения более простых гомологов ин-I дана, например метилинданов. [c.26]

    Электронные спектры поглощения инданов и их особенности, отмеченные выше, позволяют идентифицировать вновь синтезируемые индивидуальные индановые углеводороды, определять число и положение замещающих групп, а в отдельных случаях—указывать и характер заместителя. К сожалению, этими задачами практически исчерпываются возможности применения ультрафиолетовых спектров поглощения для идентификации индановых углеводородов, так как в смеси с углеводородами ряда бензола индановые углеводороды могут быть обнаружены по спектру лишь в том случае, когда их количество составляет 10—20% от общего количества углеводородов, входящих во фракцию. [c.27]

    Существзшт ли аддукты в растворе Во всяком случае, в спектрах растворителей найдены полосы, которые можно отнести за их счет [59, 26]. Например, электронные спектры поглощения растворов перхлората серебра в бензоле, ксилоле и толуоле имеют каждый полосу поглощения между 2770 и 2900 А, принадлежащую соединениям Ag 104 состава 1 1с соответствующим углеводородом [26]. Мы не рассматриваем здесь огромного числа изученных в растворах и выделенных в свободном состоянии комплексов молекул неполярных жидкостей с неорганическими солями, заведомо содержащими ион-комплексообразователь. Однако, если принять предположение, что молекула растворителя может быть присоединена как катионом, так и анионом соли, особенно ионом галогена, то способными к образованию аддуктов в растворе можно будет считать почти все типичные электролиты, изучавшиеся в средах с низкими д. п. [c.295]

    Тонкослойную хроматографию нефтяных ванадилпорфиринов проводили на стандартных пластинах Силуфол в бензоле. Масс-спектры были получены на масс-спектрометре МАТ-311 Varian при энергии ионизирующих электронов 70 эВ и температуре системы напуска 225°С. [c.13]


Смотреть страницы где упоминается термин Бензол электронный спектр: [c.34]    [c.141]    [c.8]    [c.611]    [c.34]    [c.34]    [c.83]    [c.45]    [c.14]    [c.611]    [c.82]    [c.19]    [c.45]    [c.443]   
Биохимия Том 3 (1980) -- [ c.18 ]

Спектроскопия органических веществ (1992) -- [ c.26 ]




ПОИСК





Смотрите так же термины и статьи:

Бензол электронное

Спектры электронные



© 2025 chem21.info Реклама на сайте