Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Секстет

    Энтропия информации кристаллических катализаторов рассчитывалась в связи с решением задач подбора катализаторов в процессах гидрирования и дегидрирования, изотопного обмена водорода с дейтерием, орто-пара-превращения водорода и др. [87]. Исследовалась зависимость энтропии информации кристаллических катализаторов от размера кристалла и структуры активного центра. Были рассмотрены три каталитические системы с различной структурой решетки кристалла 1) гранецентрированная трехмерная решетка кристалла 2) простая кубическая решетка 3) одномерные кристаллы в виде линейных цепочек атомов без изломов и с изломами на т-ж атоме. Первая каталитическая система рассчитывалась для четырех модификации структуры активного центра единичный атом решетки п = 1) дуплет атомов п = 2) трехатомный центр п = 3) шестиатомный центр-секстет Баландина. Модификация третьей каталитической системы — цепочка из N атомов без изломов, цепочка из N атомов с изломом на каждом третьем атоме, цепочка атомов с изломом на каждом четвертом атоме. Зависимости энтропии информации кристаллических катализаторов от структурных параметров активных центров показаны на рис. 2.13, а. [c.102]


    Согласно электронным представлениям, все вещества, способствующие пинаколиновой перегруппировке, электрофильны поэтому главной стадией процесса является выделение одной гидроксильной группы и промежуточное образование иона карбония. Электронный дуплет, общий для атома углерода и гидроксила, удерживается гидроксилом при отщеплении его, поэтому атом углерода с секстетом электронов заряжается положительно (ион карбония). Благодаря этому происходит перемещение радикала с полным электронным октетом от соседнего атома углерода, водородный же атом оставшейся гидроксильной группы отщепляется в виде протона, получив положительный заряд. [c.456]

    В ВНз атом бора имеет на внешней электронной оболочке только секстет электронов. Вследствие тенденции к достройке внешней электронной оболочки до октета атом бора в ВНз обладает электрофильными свойствами. (Кстати, этим же объясняется тот факт, что в обычных условиях ВНз существует в виде диборана.) Кроме того, следует принять во внимание и то, что бор, хотя и не намного, менее электроотрицателен, чем водород, и поэтому на атоме бора в ВНз имеется дефицит электронной плотности. [c.24]

    Плоская адсорбция н-пентана на секстете атомов платины. [c.125]

    В ранней теории Баландина и сотр. [77] считали, что адсорбция бензола аналогична ассоциативной адсорбции олефинов, и предположение о секстете активных центров, образующих правильный шестиугольник, было достаточно жестким геометрическим ограничением (форма А), исключающим все металлы с объемноцентрированной кубической решеткой (а-Сг, а-Ре). С тех пор было показано (несмотря на наличие некоторых противоречащих данных [78]), что на а-Ре гидрогенизация бензола происходит [69]. Обнаружение л -связанного бензола в комплексах (разд. 11.1.В) заставило многих авторов [79] постулировать, что именно я-комплекс (В) представляет собой наиболее вероятную форму адсорбции бензола [c.94]

Рис. 205. Схема дегидрирования СеН на секстетах(по Баландину) Рис. 205. <a href="/info/562669">Схема дегидрирования</a> СеН на секстетах(по Баландину)
    Углеводороды, в отличие от сульфидов, в среде водной серной кислоты практически не протонируются и остаются поэтому в углеводородной фазе [19, 20]. Тиофены (наибольшая после сульфидов группа сернистых соединений нефтяных фракций) слабо протонируются в растворах серной кислоты вследствие участия неподеленной электронной пары атома серы в системе конъюгированных связей с образованием устойчивого ароматического секстета. [c.154]


    Здесь имеет смысл рассмотреть строение молекулы монооксида углерода. Поскольку кислород более электроотрицательный элемент, чем углерод, а кратная связь С = 0 легко поляризуется, то можно было бы предполагать, что молекула СО будет иметь большой днпольный момент. В формуле (29) у атома углерода имеется только секстет электронов, поэтому можно было бы предположить, что монооксид углерода будет обладать высокой (соизмеримой с карбенами) реакционной способностью. И, наконец, учитывая, что на атоме углерода имеется неподеленная пара электронов, можно было бы утверждать, что монооксид углерода будет сильным нуклеофилом. [c.495]

    Адсорбция молекул может происходить и на нескольких активных центрах триплет, квадруплет, секстет—мультиплеты) одновременно, причем если силы притяжения превысят силы сцепления (связи) Б молекуле, последние разорвутся. Адсорбированные молекулы с сильно деформированными связями образуют с активными центрами катализатора временно существующий активный комплекс. Для проведения каталитической реакции необходимо, чтобы активный комплекс диссоциировал по другому направлению и образовавшиеся молекулы десорбировались, для чего необходима затрата некоторого количества энергии (энергия десорбции). [c.139]

    Ион карбония имеет лишь секстет электронов и является катионом. С . При реакциях ион карбония получает недостающую электронную пару от другой органической молекулы и переходит [c.324]

    Постоянное присутствие в таких полимерах электронных секстетов ведет к дальнейшей полимеризации и быстрому нарастанию люлекулярного веса молекул. В результате этих превращений олефины совершенно исчезают. Скорость полимеризации стимулируется присутствием хлористого водорода, действующего каталитически  [c.333]

    По структуре и свойствам пиридин являегся типичным ароматическим соединением, имеющим секстет тт-электронов  [c.253]

    Образовавшийся в качестве промежуточного продукта анион а распадается на Вг" и неустойчивый промежуточный продукт б с секстетом электронов у азота последний стабилизуется вследствие перемещения к нему алкильного остатка и таким образом получается эфир изоциановой кислоты в. Если атом углерода карбонильной группы является меченым (С ), в результате перегруппировки весь радиоактивный углерод оказывается в образовавшемся СО2. [c.163]

    Причиной перегруппировки промежуточного продукта г в эфир изоциановой кислоты, как уже указывалось при гофмановской перегруппировке, является ненасыщенность атома азота, стремящегося дополнить секстет электронов до октета. [c.163]

    В некоторых случаях неустойчивое промежуточное соединение с секстетом электронов у атома С, образовавшееся после отщепления азота, может стабилизоваться также за счет перемещения одного атома Н и превращения в ненасыщенный кетон  [c.242]

    Однако исходя из такой формулы невозможно объяснить, почему молекула СО имеет очень небольшой дипольный момент (0,1 Д у формальдегида р, = 2,3 Д) и почему, несмотря на наличие только секстета электронов на внешней электронной оболочке атома, углерода, молекула СО химически сравнительно инертна, а не ведет себя подобно карбену. Остается предположить, что в молекуле СО достройка внешнего электронного уровня атома углерода до октета осуществляется внутри самой молекулы за счет одной из неподеленных пар р-электронов атома кислорода  [c.393]

    По изменению параметра, характеризующего форму линии секстета — спектра ПЭ, и температурной зависимости скорости рекомбинации радикалов авторы работы [51] определили рост содержания неориентированной фракции [c.224]

    Известно также, что озон легко с выделением энергии диссоциирует на молекулярный и атомарный кислород атомарный кислород, имея на внешней электронной оболочке только секстет электронов, способен инициировать гомо-лиз связи С—С  [c.28]

    Образование интермедиата (45) можно представить следующим образом. Пероксикислоты в условиях реакции разлагаются, генерируя атомарный кислород. При наличии в реакционной смеси алкена атомарный кислород, имеющий на внешнем электронном уровне секстет электронов, может достроить его до октета, вызвав гомолиз я-связи в алкене  [c.38]

    Механизм этой перегруппировки трактуется следующим образом. Катализатор способствует отрыву молекулы азота от диазокетона, в результате чего на атоме углерода, ранее связанном с диазогруппой, остается секстет электронов. Последующая достройка электронной оболочки до октета у этого атома происходит в результате миграции группы К в виде аниона с последующим смещением электронной плотности, приводящим к образованию кетена  [c.470]

    НИМИ останутся неизменными и лишь валентные углы увеличатся до 120°. Между тем, деформация молекулы циклопентана при такой адсорбции, как показано на рис. 25, будет гораздо больше одна из пяти С—С-связей обязательно должна будет существенно растянуться. Разрыв этой растянутой (а следовательно, ослабленной) связи и присоединение водорода происходят по дублетной схеме мультиплетной теории, но для достижения необходимой деформации молекула должна предварительно адсорбироваться на активном центре, представляющем собой полный секстет. Поэтому такая схема получила название секстетно-дублетной. Такой секстетный способ адсорбции на Pt (грань 111) вызовет, естественно, необходимую деформацию исходной молекулы циклопентана и, наоборот, не приведет к сколько-нибудь значительному растяжению связей в циклогексанах и алка-нах. Очевидно этим и обусловлено практически полное отсутствие гидрогенолиза циклогексанов и алканов на Pt-катализаторах в обычных условиях. [c.126]


    Схематическое расположени -ч стиц в мультиплетном комплексе при дегидрировании циклогексана на секстете изображено на рис. XIII, 5 (на чертеже в молекуле циклогексана показаны только связи С—С). Атомы катализатора /, <3 и 5 оттягивают водородные атомы от углеродных атомов /, а Ь, с н й, е [c.345]

Рис. XIII, 5. Схема дегидрирования циклогексана на платиновом секстете. Рис. XIII, 5. <a href="/info/562669">Схема дегидрирования</a> циклогексана на платиновом секстете.
    Молекула бензола шесть хр -х-а-свяэей между- атомами углерода и недорода, а также шесть р -хр -а-связей и перекрывание шести р орбиталей, образующих тг-электронный секстет между атомами углерода [c.53]

    На основе принципа геометричес ого соответствия можно решить некоторые вопросы, связанные с подбором катализатора для данной реакции. Например, с использованием этого принципа успешно решается вопрос о подборе металла (катализатора) для реакции дегидрирования циклогексана СвН 2-5-СвНв4-ЗНа. Из принципа геометрического соответствия следует, что мультиплет для катализа этой реакции должен быть секстетом. Механизм образования [c.439]

    При изучении химических превращений тиофенов следует учитывать, что во многих случаях гетероатом серы и группа —СН=СН— бензольного кольца идентичны по химическому поведению. Гетероатом дополняет л-электронную систему до ароматического секстета, а также определяет направленность замещения в тиофе-новом кольце а-положения на несколько порядков активнее р-положений. Наиболее важны для тиофенов реакции электрофильного замещения и металлирования, дающие начало процессам получения многочисленных важных продуктов алифатиче- [c.252]

    По мультиплетной теории четырех-, пяти-и семичленные циклы не дегидрируются вследствие несоответствия их структур с секстетами активных центров на поверхности катализатора. [c.258]

    Но он, однако, считает возможной и плоскостную ориентацию молекул циклогексана на активных центрах катализатора, что совпадает с утверждением А. Ф. Платэ [30], допускающим, что на платине из парафиновых углеводородных цепей образуются ароматические шестичленные циклы через секстетный механизм. Молекула парафина сперва адсорбируется на секстете, но дальнейшие превращения протекают по дуплетному механизму. [c.274]

    Легкость взаи.модействия олефинов с хлористы.м алюмпние.м становится еш,е более понятной, если учесть их ненасыщениосп,, Олефин обладает неподеленной электронной парой, А1С1з—электронным секстетом поэтому комплекс Густавсона в электронной интерпретации образуется следующим образом  [c.332]

    При этом образуется ион карбония с положительным зарядом у того атома углерода, который имеет лишь электронный секстет. Такой ион может 1) соединиться с отрицательным ионом кислоты (образование алкилкислоты), 2) потерять какой-либо протон, что даст исходный или изомерный олефин, способный полимеризоваться. В последнем случае, например, изобутилен реагирует следующим образом  [c.624]

    Все это связано с особенностью структур этих гетероциклических соединений. У них в пятичленных кольцах четыре тг-электрона двух сопряженных двойных связей и неподеленная электронная пара гетеро-атома (О, S, N) образуют секстет тс-электронов, что укладывается в рамки правила ароматичности Хюккеля. (4п-г2) л-электронов в замкнутой системе сопряженных кратных связей (где п - целое нео фицатель-ное число). Таким образом, эти шесть тс-электронов ко,ища образуют делокализованную систему, как в бензоле  [c.248]

    Если деградация образца и исследование методами ЭПР происходят при температуре жидкого азота, то скорость реакций радикалов в достаточной степени замедляется и становится возможным прямое определение основных радикалов, полученных путем механической деградации. В подробном исследовании Закревский, Томашевский и Баптизманский [10] выявили схему реакций радикалов для ПА-6 (капролактама, капрона). При температуре 77 К они получили сложный спектр со сверхтонкой структурой секстета, наложенного на триплет. Определяя расстояния между различными компонентами секстета (расщепление) и отношения интенсивностей последних, эти авторы установили присутствие радикала R—СНг—СНг (III). Такой радикал образуется путем разрыва любой связи (с первой по шестую) в звене капролактама  [c.163]

    Если выделить наложенный секстет из исходного спектра, то остается триплет, который должен быть вызван разрывом указанной выше молекулы. Маловероятное разрушение третьей и четвертой связей можно сразу же исключить, поскольку последнее вызывает лишь образование радикалов типа III. Разрушение шестой и седьмой связей исключалось путем сравнения с капроном, дейтерированным в иминогрупнах разрушение первой связи не вызывает образования радикала, которому в спектре соответствует триплет. Исследование всех остальных возможностей, в том числе вторичных радикалов, позволяет заключить, что наиболее вероятными местами разрыва остаются лишь вторая и пятая связи. После того как был изучен а- и е-метилзамещенный капролактам, авторы [10] окончательно смогли установить, что в напряженной молекуле ПА-6 обе связи (вторая и пятая) действительно разрываются, причем с равной вероятностью. Следовательно, при разрыве молекулы ПА-6 образуются три основных радикала  [c.163]

    Кроме бензола, у которого в сопряжении находятся л-электроны кратных связей С—С, к ароматическим системам с п = 1 относятся некоторые гетероциклические соединения, например фуран, пиррол и тиофен, в которых кратные углерод-углеродные связи находятся в сопряжении с неподеленными парами р-электронов таких гетероатомов, как кислород (фуран), азот (пирро.л) и сера (тиофен). В этих соединениях гетероатом связан с двумя атомами углерода, находящимися в состоянии 5р -гибридизации, вследствие чего возникает мезомерное взаимодействие его р-электронов с сопряженными связями С = С. В результате эти пары р-электронов гетероатомов оказываются включенными в характерный для моноциклнческих ароматических систем секстет электронов. [c.310]

    Может возникнуть вопрос, почему диазоний-катион атакует азокомпонент крайним, а не четырехковалентным атомом азота, на котором должна быть сосредоточена большая часть положительного заряда диазогруппы. Во-первых, на крайнем атоме азота также имеется переданный по индукции от соседнего атома азота значительный дефицит электронной плотности кроме того, одной из резонансных структур диазоний-катиона является форма (60) с -секстетом электронов на крайнем атоме азота (нитрен). Предполагают даже, что оба атома азота диазогруппы несут приблизительно одинаковые положительные заряды. [c.439]


Смотреть страницы где упоминается термин Секстет: [c.150]    [c.343]    [c.478]    [c.103]    [c.185]    [c.436]    [c.117]    [c.119]    [c.180]    [c.440]    [c.440]    [c.99]    [c.434]    [c.159]    [c.167]    [c.108]   
Ядерный магнитный резонанс в органической химии (1974) -- [ c.106 ]




ПОИСК





Смотрите так же термины и статьи:

Ароматический секстет

Ароматический секстет беизола

Ароматический секстет и его значение для стабилизации ароматических систем

Ароматический секстет нафталина

Ароматический секстет пиридина

Ароматический секстет пиррола

Ароматического секстета теория

Механизм открытого секстета

Перегруппировки э лектронного секстета

Перегруппировки электронного секстета азота

Перегруппировки электронного секстета кислорода

Перегруппировки электронного секстета углерода

Потенциалы попизацптт и электронные уровни ароматических секстетов

Прочие системы, содержащие ароматический секстет

Секстет ароматический Семидин

Секстет электронов

Секстет электронов ароматический

Секстет электронов о и Семидин

Секстет электронов у атомов углеро

Фурановый цикл электронный секстет

Электронные секстеты

Электронные секстеты в карбониевых попах и борана

Электронные секстеты в перегруппировках

Электронные секстеты в растворе



© 2025 chem21.info Реклама на сайте