Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Пирролы спектры

    Гетероциклические соединения [79, 81, 154] могут присутствовать и в группе соединений основного характера и в группе соединений остаточного азота. Для качественного определения азотных гетероциклов в инфракрасной области можно пользоваться табл. 68 [79, 207]. Гетероциклические соединения с атомом азота в кольце, как правило, имеют характер вторичных аминов или иминов (пирролы, пиридины, хинолины). В их спектрах поглощения присутствуют полосы поглощения вторичных аминов или иминов, отличающихся, как уже говорилось, повышенной интенсивностью. Кроме того, присутствуют интенсивные полосы поглощения, соответствующие скелетным колебаниям кольца, валентным колебаниям замещенных колец, валентным и деформационным колебаниям водородного атома кольца. [c.134]


Таблица 3.1. Данные масс-спектров (70 эВ) замещенных пирролов Таблица 3.1. <a href="/info/1012639">Данные масс</a>-спектров (70 эВ) замещенных пирролов
    Химические сдвиги протонов ЫН-группы могут изменяться в зависимости от природы растворителя, концентрации и природы исследуемого соединения, вследствие участия их в процессах межмолекулярного обмена, при образовании водородных связей и по этим причинам не имеют строго фиксированных значений химических сдвигов. Однако обычно сигналы алифатических аминов наблюдаются в сильном поле (2—4 м. д.). В то же время, если ЫН-группа связана с зр -гибридизованным атомом углерода (например, в амидах, пирроле и т. п.), то сигналы оказываются в слабопольной части спектра (>5 м. д.). [c.134]

    Пятичленные гетероциклические соединения (фуран, тиофен и пиррол) имеют по две полосы поглощения — интенсивную коротковолновую полосу в области 200—210 нм и малоинтенсивную — в области длинноволновой части спектра (252—350 нм) (табл, 5). [c.136]

    В коротковолновой части спектров всех незамещенных пятичленных гетероароматических соединений имеется только один максимум средней или высокой интенсивности, лишенный тонкой структуры. Эти спектры не имеют сходства со спектрами бензола и не содержат сколько-нибудь заметного п- я -поглощения. Его нет даже в спектрах тех трех азолов, которые подобно пиридину содержат азометиновый атом азота. Правда, в литературе встречаются указания на присутствие следов такого поглощения в спектрах пиррола, тиофена и имидазола, но, по-видимому, это должно быть отнесено за счет наличия загрязнений. [c.28]

    Хлорофилл имеет удивительно чистую зеленую окраску, тона которой изменяются в зависимости от состояния хлорофилла и его концентрации в зеленом листе растений. Следует иметь в виду, что в молекуле хлорофилла макрокольцо возмущено только тремя простыми я-связями остатков пиррола. Четвертая я-связь гидрирована. В результате хромофор порфирина заметно поляризуется тремя я-связями, что приводит к высокой вероятности поглощения квантов света в красной часта спектра. Как уже сказано, существенную роль в поляризации хромофора порфирина в хлорофилле имеет С=0-группа. [c.278]

    В инфракрасных спектрах структурно родственных ароматических гетероциклических соединений обычно имеются типичные для этой группы соединений полосы поглощения. Так, для пятичленных гетероциклов - пиррола (3.1), фурана (3.2) и тиофена (3.3) - характерны полосы поглощения при 3100 см 1, обусловленные валентными колебаниями связей С-Н, и при 1610-1515 см , соответствующие валентным колебаниям скелетных связей С-С, Полосы внеплоскостных деформационных колебаний в спектрах фурана и тиофена располагаются при 990-700 см- , а в спектре пиррола - при 770--710 см-1. [c.58]


    Пики образующихся ионов наряду с пиками М+ являются наиболее интенсивными в масс-спектрах алкиловых эфиров р-пир-рол- и р-индолкарбоновых кислот. При переходе к алкиловым эфирам а-пиррол- и а-индолкарбоновых кислот значительными, а иногда и максимальными становятся пики ионов [М—НОН] +  [c.249]

    Спектры замещенных пирролов. [c.20]

    Почему в спектре пиррола нет полосы п. - перехода  [c.25]

    Область частот ниже 600 см изучена недостаточно. Литературные данные указывают для пиррола полосу 561 см , исчезающую в спектре раствора пиррола в СС14, где вместо нее появляется полоса поглощения 503 см . Эти полосы интерпретируются как признаки присутствия связаппой и свободной NH-группы [1961. [c.139]

    Качественно ИК-снектры концентрата и подфракций кис.чых соединений практически не отличаются, но в ИК-спектрах подфракций отмечается более четкое разделение полос поглощения в области 1600-1800 см , где могут давать поглощстгис амиды, имиды, кислоты, ангидриды кислот и другие кислородсодержащие соединения 12.9]. Кроме того, при переходе от концентрата к подфракциям наблюдается уменьшение полосы поглощения при 1600 см в связи с более четким отделением ароматических углеводородов. В подфракции 1 наблюдается поглощение фенольных, пирроль- [c.36]

    Определите строение замещенного пиррола 7H9NO по его спектру ПМР (рис. 4.32). [c.109]

    В спектрах ЯМР ароматических соединений не наблюдается простой зависимости величины химических сдвигов протонов (т) от электронной плотности связанных с водородом кольцевых атомов углерода. Тем не менее в этом направлении имеется ясная тенденция, отраженная в табл. 4. Из нее явствует, что более низким электронным плотностям соответствуют и более низкие значения т. Такая закономерность наглядно проявляется на примере пиридина атом водорода, связанный с Сз-атомом, характеризуется самым высоким значением т. Кроме того, имеет значение и прямой индуктивный эффект, вызванный влиянием электроотрицательных атомов. Поэтому в пиридине в самом слабом поле наблюдается резонансное поглощение водорода, связанного с Сг-атомом, находящимся гораздо ближе к кольцевому азоту, чем Сз- и С4-атомы. То же самое относится к фурану и в меньшей степени к тиофену И пирролу. Самые низкие величины химических сдвигов оказались, как и следовало ожидать, у обладающего формальным положительным зарядом пирилий-катиона. [c.29]

    Соедпнения, сконцентрировавшиеся в третьей фракции, относятся, вероятно, к азотным алкилзамещенным гетероциклам типа пиридина, пиррола, хинолина. Возможно присутствие соединений с двумя атомами азота в кольце пли в молекуле, например типа аминопирролов или амино-пирпдипов. Это в значительной мере подтверждается ИК- и УФ-спектра-ми. В ИК-спектрах обнаруживается сильное поглощение в области 3440— 3400 см , относящееся к С—И связям в кольце, а также поглощение около 1565 и 1500 см- , относящееся к С—С связям в азотных гетероциклах. Поглощение около 1620, 1572, 1471 и 1433 си- характерно для валентных колебаний кольца замещенных пиридина. Колебание пяти- и шестичленных колец проявляется также в области 1020—995 m 1. Отмеченное в спектрах поглощение около 2250 m"1, вероятнее всего, указывает на присутствие группы С—NH. В УФ-спектрах имеются отчетливые максимумы поглощения при 175, 195 и 257 мкм, относящиеся к пирпдинам, а нри 215 мкм — к пирролам. Фракция III имеет максимум поглощения также при 550 мкм, относящийся к пирролам и индолам. [c.17]

    Напротив, для пятичленного гетероциклического соединения пиррола (2.29) характерно плоскостное сопряжшие электронной пары атома азота с тг-электронами бутадиеиовой-1,3 системы в результате такого сопряжения образуется находимый для ароматичности секстет тг-электронов. Спектр пиррола резко отличается от спектра бензола. [c.36]

    Пирролы, Особенностью электронных спектров поглощения пиррола и его алкилпроизводных гомологов является отсутствие полос, возникновение которых обусловлено переходом с орбитали пеподеленных электронов атома азота на я-электронную орбиталь кольца. Поскольку пирролы имеют меньшие валентные углы, чем шестичленныо гетероциклы, в частности пиридин, орбиталь неподеленных я-электронов атома азота в пирроле обладает более ярко проявляющимся -характером по сравнению с аналогичной орбиталью атома азота в пиридине. Так как низшая вакантная я-орбиталь пиррола не имеет узловой плоскости, то полосы мя должны быть достаточно сильными и, возможно, перекрываться переходами и я. [c.120]

    Пирролы. Протоппый спектр жидкого пиррола содержит очень широкую линию в слабом поле, соответствующую водороду группы КН, и сложный спектр протонов, связанных с атомами углерода кольца. При температуре выше 50°С ширина сигнала группы КН уменьшается и появляется широкий триплет (распределение иптенсивностей 1 1 1), [c.157]

    Спектры ЯМР С гетероциклических ароматических соединений качественно напоминают спектры замещенных алкенов, однако влияние гетероатома проявляется не так заметно, как, например, в алкенах. Для пиррола влияние атома азота проявляется в смещении резонанса сигналов 2 и 3 атомов в более сильное поле (на 10 м. д. для 2 атомов и - 20 м. д. для 3 атомов) по отнолгению к сигналу бензола [136]. Введение дополнительного атома азота в пятичленном цикле приводит к слабопольному сдвпгу для 2 атома. Смещение сигнала 3 атома фактически не наблюдается. Химические сдвиги С для некоторых азотсодержащих пятичленных гетероциклов приведены ниже [136]  [c.159]


    Индолы. Анализу спектров ЯМР индолов посвяи ено много работ [114, 137]. В индоле 2 п 3 водородные атомы вызывают появление триплетов (рис. 53), отделенных друг от друга и от сигналов других ароматических протонов. В индоле, как и в пирроле, протоны кольца взаимодействуют друг с другом и протоном группы N11. Это подтверждается тем, что сигналы от 2 и 3 протонов в N-мeтилиндoлe являются дублетами (рис. 53). [c.159]

    Различные соединения имеют отличающиеся друг от друга удельные сдвиги (рис. 56). Анализ спектров 41 ЯМР с применением ЛСР невозможен в случае готероатомов с неподеленной парой, сопряженной с непредельными фрагментами молекул. К такому типу соединений относятся пирролы, индолы и карбазолы. Однако амины, пиридины, хинолины и их производные имеют весьма большие удельные сдвиги в характеристических областях и принципиально могут быть пдентифицированы. Полу- [c.166]

    Рейтц (194, 195) на основании изучения раман-спектров фурана, тиофена и пиррола приплел к заключению, что по своему характеру молекула фурана диолефиновая Из сравнения раман-спектров сделан вывод, что степень ароматичности по изменению характеристической этиленовой связи уменьшается в ряду бензол, тиофен, пиррол, фуран. [c.25]

    Выход 25—27 г (37—40%), Пиррол представляет собой бесцветную, быстро темнеющую на свету жидкость (перегнанный в вакууме, он темнеет значительно медленнее). Хранить его следует в запаянном сосуде в атмосфере инертного газа, 1,5082, d 0,967. УФ спектр (циклогексан) J тах (Ige) 211 нм (3,87). ИК спектр ( I4) 3495 см- (NH). Спектр ПМР ( D I3) 6.22 (Н-3,4)  [c.6]

    В циклич. комплексах с В. с., в к-рых каждая молекула образует две B. . с участием атома Н и неподеленной пары электронов атома функц. группы, происходит синхронное перемещение протонов по В. с.-выро ж де нны й обмен между двумя эквивалентными состояниями комплекса. Этот процесс в газовой фазе и в малополярных апротонных р-рителях определяет механизм рьции протонного обмена АН -t- ВН АН -t- ВН (атомы А и В м. б. одинаковыми). Скорость вырожденного обмена растет с увеличением прочности B. . в циклич. димерах карбоновых к-т, комплексах к-т со спиртами константа скорости процесса превышает 10 с" при 80 К. Протонный обмен спиртов с водой, к-тами, вторичными аминами в инертных р-рите-лях или в газовой фазе изучают по скорости установления равновесного распределения изотопной метки или по форуме сигналов спин-спинового взаимод. в спектрах ЯМР. Установлено, что р-ция имеет первый порядок по каждому из компонентов, т.е. является бимолекулярной, константы скорости составляют 10 -10 лДмоль-с), энергия активации-от 4 до 20 кДж/моль. В случаях участия группы АН во внутримолекулярной B. ., включения неподеленной пары электронов в сопряжение (напр., в амидах, пирролах), снижения протонодонорной или протоноакцепторной способности фрагментов (напр., для тиолов, вторичных фосфинов) скорость обмена снижается, энергия активации р-ции увеличивается. Синхронный переход протона в системах с невырожденным обменом иногда м. б. механизмом установления прототропных таутомерных равновесий. [c.404]

    В масс-спектрах соединений 1а-с и 2а-с, наряду с характеризующимися наибольшей интенсивностью пиками молекулярных ионов, имеются пики ионов [М-28] , образующиеся в результате экструзии этилена, что подтверждается присутствием соответствующих пиков метастабильных ионов. Основные направления распада арилзамещенных пирроло[1,2-6]пиразолов представлены на примере витасомнина на схеме 1 [3-5, 7]  [c.370]

    Бензоил-2,5-дифенилпергидропирроло[3, 4 3,4]циклопента [с]пиррол-1,3,4,6-тетраон (4). Смесь 0.010 моль фенилглиоксаля моногидрата 1, 0.010 моль валина 2 и 0.02 моль N-фенилмалеимида 3 в 30 мл 1,4-диоксана и 20 мл воды нагревают при перемешивании 3 ч [1]. Раствор упаривают в роторном испарителе при пониженном давлении и остаток перекристаллизовывают из изопропанола. Получают соединение 4 в виде порошка белого цвета. Выход 23%. Т л 253-255°С. Структура 4 установлена на основе спектров ЯМР ( Н, С) и элементного анализа. [c.586]

    Своеобразно протекает диссоциация под ЭУ К-ацилпроиз-водных пиррола, пиперидина, морфолина и других амидов такого типа. Их масс-спектры содержат довольно интенсивные пики М , а основные процессы распада связаны с расщеплением амидной связи в ионах М"" и [М-Н], которое протекает с водородными перегруппировками. [c.157]

    Детально изучено влияние растворителей на валентные колебания в следующих органических соединениях v =o в пири-до нах-4 [151], тропонах и трополонах [152], бензофеноне и Ы,Ы-диметилформам,иде [154], ацетофеноне [155], алифатических альдегидах [157], N-метилацетамиде [369], сложных эфирах и диалкилкарбонатах [370] vn=o в нитрозильном производном протопорфирина [371] vp=o в триарилфосфиноксиде 1153] и триэтилфосфиноксиде [372] vs=o в диметилсульфоксиде [154, 373] V -H в хлоралканах [160], хлороформе [374] и н-октане [375] v= -h в алкинах-1 [133, 138] v - i в галоген-алканах [150, 161] v =n в нитрилах [156] vsi-h в силанах 159] vn-h в пирроле [158], N-метилацетамиде [369] и N-ме-тиланилинах [376] vo-h в трет-бутилгидропероксиде [377]. Исчерпывающий перечень опубликованных ранее данных о влиянии растворителей на ИК-спектры составлен Халламом (см. стр. 420 в работе [134]). [c.451]

    Для 4,5,6,7-тетрафторизоиндола зарегистрирован спектр ЯМР- F [98]. Имеются данные о ЯМР- С для 2-метилизоиндола [120, 524]. Обращает на себя внимание близость поглощения резонансной энергии атомами углерода. Наиболее характерной чертой спектра ЯМР- С 2-метилизоиндола является общий высокопольный сдвиг поглощения углеродными атомами карбоциклического кольца ( 6 м. д.), больший у атомов С—1(3) изоиндола, чем, например, у соответствующих атомов углерода пиррола С—2 или индола С—2. [c.48]

    Масс-спектры пирроло[2,3-б]пиразина (87), его фенил- и метилфенилпроизводных содержат максимальные пикп М+ , а также пики ионов [М—Н]+ и [М—H N] + [114]. [c.81]

    По масс-спектральному поведению гетероароматические кислоты, содержащие карбоксил в а-положении к гетероатому, напоминают алкилбензойные кислоты. Так, в спектре 2-пиррол-карбоновой кислоты наряду с интенсивным пиком М+ присутствует максимальный пик иона [М—Н20] + Значительную интенсивность имеют также пики ионов [М—0Н]+, [М—Н2О—С0]+-, [М—С02] + -и [М—СООН]+. [c.235]

    В каков области спектра лежат полосы валентных колебаний С - Ы связев пнрядинв, пиррола в порфиринов  [c.26]

    Величины химических сдвигов [9] протонов, в особенности присоединенных к атомам углерода гетероциклических систем, могут служить мерой электронной плотности в данном конкретном положении смещение сигналов в низкие поля соответствует меньшей электронной плотности на атоме углерода. Например, в спектре Н1 ЯМР пиридина в наиболее слабых полях расположен сигнал, соответствующий а-протону (табл. 1.5), в более сильных — сигнал, соответствующий у-протону и, наконец, в наиболее сильных — сигнал, соответствующий р-про-тону. Аналогичная картина наблюдается и в спектре С-ЯМР (табл. 1.6). Кроме того, имеет значение индуктивный эффект гетероатома например, атом водорода, связанный с у-атомом углерода, резонирует в более слабых полях, чем атом водорода, связанный с у-атомом углерода аналогично в случае фурана а-протон резонирует в более слабых полях, чем р-протон. Протон в а-положе-нии катиона пирилия резонирует в самых слабых полях. В случае элекгроноиз-быточных систем ситуация совершенно противоположная протоны таких гетероциклических систем, как, например, пиррол, резонируют в существенно более сильных полях. [c.28]


Смотреть страницы где упоминается термин Пирролы спектры: [c.121]    [c.141]    [c.26]    [c.672]    [c.38]    [c.143]    [c.158]    [c.489]    [c.327]    [c.84]    [c.565]    [c.434]    [c.24]    [c.215]    [c.59]    [c.175]   
Основы химии гетероциклических соединений (1975) -- [ c.29 ]




ПОИСК





Смотрите так же термины и статьи:

Пиррол

Пиррол электронный спектр



© 2025 chem21.info Реклама на сайте