Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Гликоген лактат

    Ферментативный анаэробный распад углеводов исследуют при инкубации тканевого гомогената или экстракта с субстратами гликолиза (гликогеном, глюкозой, а также с промежуточными продуктами гликолиза). О процессе судят по приросту конечного продукта анаэробного превращения углеводов — лактата или убыли субстратов. Отдельные этапы изучают при добавлении в инкубационную среду ингибиторов ферментов или удалении диализом кофакторов и коферментов, необходимых для определенных реакций процесса анаэробного превращения углеводов. [c.49]


    Позднее мы ответим на этот важный вопрос более подробно (гл. 25), сейчас же скажем только, что если организм оказывается внезапно в критической ситуации, то мозговое вещество надпочечника выделяет в кровь гормон адреналин, который служит молекулярным сигналом для печени и мышц. Под влиянием этого сигнала печень включает свою гликоген-фосфорилазу, в результате чего повышается уровень глюкозы в крови, т.е. мышцы получают топливо. Этот же сигнал включает в скелетных мышцах расщепление гликогена с образованием лактата, благодаря чему усиливается [c.464]

    ГО промежуточного продукта цикла лимонной кислоты и углеродные скелеты многих аминокислот способны превращаться в глюкозу. Из жирных кислот с четным числом атомов углерода и из ацетил-СоА реального образования глюкозы не происходит, тогда как три углеродных атома жирных кислот с нечетным числом атомов углерода, а также образуемый бактериями рубца пропионат могут превращаться в глюкозу при этом в качестве промежуточного продукта образуется метилмалонил-СоА, превращающийся затем в сукци-нил-СоА при участии кофермента Bi2-В периоды восстановления после напряженной мышечной работы глюконеогенез протекает очень активно, благодаря чему присутствующий в крови лактат превращается в гликоген и глюкозу. [c.618]

    Метаболизм скелетных мышц специализирован на выработке АТР, необходимого для их сокращения и расслабления. При интенсивной мышечной нагрузке основным топливом служит гликоген, который превращается в лактат. В период отдыха лактат превращается снова в гликоген печени и глюкозу. Мозг использует в качестве топлива только глюкозу и р-гидроксибутират, причем последний играет важную роль при голодании. Большая часть энергии АТР в мозгу расходуется на активный транспорт ионов Na и К и на поддержание потенциала действия мембран нервных клеток. [c.775]

    Наряду с неблагоприятными социальными и экономическими последствиями алкоголизма использование спирта в качестве пищевого продукта и источника энергии имеет ряд недостатков с биохимической точки зрения. Во-первых, избыточные по сравнению с дневной нормой калории, поступающие в организм с этанолом, превращаются через ацетил-СоА только в жиры, поскольку в организме человека этанол не может превратиться в глюкозу или гликоген. Во-вторых, у многих людей большие дозы этанола вызывают гипогликемию, так как он блокирует синтез глюкозы из лактата и аминокислот. И, наконец, в-третьих, этанол-очень дорогой источник калорий. В США количество пива в упаковке из шести банок, соответствующее ИЗО ккал, стоит прибли- [c.822]

    Большая физическая нагрузка требует увеличения выработки АТР, что удовлетворяется за счет повышенного потребления кислорода. Во время спринта мышцы превращают часть гликогена в лактат. По окончании спринта лактат переносится в печень, где он снова превращается в глюкозу и гликоген. Для этого процесса требуется АТР, а следовательно, и кислород в дополнительном по сравнению с состоянием покоя количестве. [c.999]


    Глюкоза, крахмал, декстрин Глюкоза или лактат (глицерол) + ацетат Глюкоза, крахмал, маннитол, инулин Пектин, крахмал, гликоген, декстрин [c.293]

    Гликоген (одна еди- — 2 лактат + 2Й+ —32,2 -51,6  [c.185]

    Для выяснения роли молочной кислоты в образовании гликогена в пищу крысам вводились лактаты, меченные радиоактивным углеродом в разных положениях. В зависимости от последних, гликоген печени содержал разные доли введенного радиоактивного углерода, причем он всегда оказывался сильно разбавленным обыкновенным углеродом. Уже через полчаса после введения меченого лактата выдыхаемая СО была сильно радиоактивной. Все это указывает, что при синтезе гликогена молочная кислота не входит в него в виде целой группы, а предварительно испытывает превращения, ведущие к ее расщеплению. [c.314]

    КрФ АТФ АДФ Креатин Неорганический фосфат Водородные ионы Лактат Гликоген 24,0 5.0 0,05 4.0 3.0 1.0 ю- 1.0 200.0 3,0 4,5 0,5 25.0 24.0 4,0 10-3 25.0 75.0 [c.351]

    Первый этап распада углеводов практически обратим. Из пирувата, а также из лактата (см. ниже) может синтезироваться глюкоза, а из нее затем гликоген. [c.50]

    Гликоген Укороченный Лактат [c.54]

    Основной углевод мышечной ткани - гликоген. Концентрация гликогена колеблется в пределах 0,2-3%. Свободная глюкоза в саркоплазме содержится в очень малой концентрации - имеются лишь ее следы. В процессе мышечной работы в саркоплазме происходит накопление продуктов углеводного обмена - лактата и пирувата. [c.126]

    Взаимоотношения между этими ключевыми ферментами глюконеогенеза и гликолизом показаны на рис. 20.1. После переаминирования или дезаминирования глюкогенные аминокислоты образуют либо пируват, либо интермедиаты цикла лимонной кислоты. Поэтому описанные выше реакции могут обеспечить превращение как глюкогенных аминокислот, так и лактата в глюкозу и гликоген. Так, например, лактат превращается в пируват, который далее поступает в митохондрии, где превращается в оксалоацетат, а затем по рассмотренному выше пути — в глюкозу  [c.198]

    При выполнении физических упражнений средней интенсивности в течение нескольких часов мышцы в качестве источника энергии используют собственный гликоген, другие ткани используют глюкозу, циркулирующую в крови. Печень поддерживает уровень глюкозы в крови как за счет мобилизации гликогена, так и за счет глюконеогенеза. Основным субстратом глюконеогенеза служит лактат, образующийся в работающих мышцах и эритроцитах. Другими субстратами являются аминокислоты, глицерин, пируват (рис. 6.4). [c.384]

    Мышцы. Основные источники энергии в мышцах-глюкоза, жирные кислоты и кетоновые тела. Мышцы отличаются от мозга большим запасом гликогена (1200 ккал). Около трех четвертых всего гликогена организма находится в мышцах (табл. 23.1). Содержание гликогена в мышцах после еды может достигать 1%. Этот гликоген легко превращается в глюкозо-б-фосфат для последующего использования в мышечных клетках. В мышцах, как и в мозгу, глюкозо-б-фосфатазы нет, в связи с чем экспорта глюкозы из этих клеток не происходит. Вместо этого мышцы задерживают глюкозу, которую они предпочитают другим источникам энергии в периоды повышенной активности, В активно сокращающихся скелетных мышцах скорость гликолиза сильно превосходит скорость цикла трикарбоновых кислот. Пируват, образующийся в этих условиях, большей частью восстанавливается до лактата. Лактат переходит в печень, где он превращается в глюкозу. В результате этих превращений, называемых циклом Кори (разд, 15.21), часть метаболических отходов мышц перемещается в печень. Кроме того, в активно работающей мышце образуется большое количество аланина в результате трансаминирования пирувата. Подобно лактату, аланин может превращаться в печени в глюкозу. Совершенно иначе организован метаболизм покоящейся мышцы. В ней основным источником энергии служат жирные кислоты. Источником энергии для сердечной мышцы могут служить также кетоновые тела. Более того, сердечная мыш ца предпочитает ацетоацетат глюкозе. [c.289]

    Печень. Метаболическая активность печени обеспечивает источниками энергии мозг, мышцы и другие периферические органы. Вещества, всасываемые в кишечнике, попадают главным образом в печень, что позволяет ей регулировать концентрацию в крови многих метаболитов. Печень поглощает большое количество глюкозы и превращает ее в гликоген. Таким образом, она способна запасать до 400 ккал. Печень может выделять глюкозу в кровь, расщепляя гликоген, в виде которого глюкоза запасается, или осуществляя глюконеогенез. Основные предшественники глюкозы-лактат и аланин, посту- [c.290]

    Метаболизм глюкозы у животных имеет две наиболее важные особенности [44]. Первая из них — это запасание гликогена, который в случае необходимости может быть быстро использован в качестве источника мышечной энергии. Однако скорость гликолиза может оказаться высокой — весь запас гликогена в мышце может быть истощен всего лишь за 20 с при анаэробном брожении или за 3,5 мин в случае окислительного метаболизма [45]. Таким образом, должен существовать способ быстрого включения гликолиза и его выключения после того, как необходимость в нем исчезнет. В то же время должна иметься возможность обратного превращения лактата в глюкозу или в гликоген (глю-конеогенез). Запас глюкогена, содержащегося в мышцах, должен пополняться за счет глюкозы крови. Если количество глюкозы, поступающей с пищей или извлекаемой из гликогена печени, оказывается недостаточным, то она должна синтезироваться из аминокислот. [c.503]


    Слиянию генов могла принадлежать важная роль в процессе эволюции основных метаболических путей. Энергетический путь метаболизма каждого из перечисленных ниже ферментов определился, вероятно, в результате объединения копии изначального (ди)нук-леотидсвязывающего домена с одним или большим числом других доменов, отличных от первого фосфоглицераткиназа [235, 310, 311], дегидрогеназы, специфичные соответственно к глицеральдегид-3-фосфату, лактату, малату и алкоголю [91], и гликоген-фосфорилаза [236]. Как обсуждалось в разд. 5.4, (ди)нуклеотидсвязывающий домен представляет N-концевую часть первых четырех ферментов, тогда как в алкогольдегидрогеназе он расположен в С-концевой части, а в фосфорилазе — в середине цепи. Это указывает на то, что ограничения в пространственном расположении доменов не вызывали затруднений при их использовании в качестве составных блоков для построения самых сложных белков в процессе эволюции. [c.229]

    После того как в мыщцах истощается запас гликогена, основным источником пирувата становятся аминокислоты, образующиеся после деградации белков. При этом более 30% аминокислот, поступающих из крови в печень, приходится на аланин — одну из гликогенных аминокислот, углеродный скелет которой используется в печени как предшественник для синтеза глюкозы. Механизм превращения мышечных аминокислот в аланин, схема его участия в глюконеогенезе представлены в гл. 24. Другим источником пирувата является лактат, который накапливается в интенсивно работающих мышцах в процессе анаэробного гликолиза, когда митохондрии не успевают реокислить накапливающийся НАДН. Лактат транспортируется в печень, где снова превращается в пируват, а затем в глюкозу и гликоген. Этот физиологический цикл (рис. 20.2) называют циклом Кори (по имени его первооткрывателя). У цикла Кори две функции — сберечь лактат для последующего синтеза глюкозы в печени и предотвратить развитие ацидоза. [c.273]

    Синтез глюкозы из малых молекул-предшественников идет с особенно большой скоростью в период восстановления после мышечной нагрузки, требующей напряжения всех сил, например после бега на 100 м (дополнение 15-1). При такой интенсивной мышечной работе потребность скелетных мыпщ в АТР неизмеримо возрастает и циркуляторная система уже не успевает доставлять к ним глюкозу и кислород достаточно быстро для того, чтобы эту потребность удовлетворить. В этом случае в качестве резервного топлива используется мышечный гликоген, быстро расщепляющийся в процессе гликолиза с образованием лактата это сопровождается синтезом АТР, который и служит источником энергии для мышечного сокращения. Поскольку в таких условиях кислорода не хватает, лактат не может подвергнуться в мышцах дальнейшим превращениям и диффундирует в кровь, так что его содержание в крови может быть очень высоким. Закончивший стометровку спринтер вначале дышит еще очень тяжело, но постепенно его дыхание выравнивается и через некоторое время вновь становится нормальным. В течение этого периода восстановления возвращается к нормальному низкому уровню также и содержание лактата в крови. Значительная часть избытка кислорода, потребляемого в период восстановления (этот избыток служит мерой так называемой кислородной задолженности), расходуется на образование АТР, который необходим для того, чтобы из лактата, образовавшегося анаэробно во время спринтерского бега, могли быть ресинтезированы глюкоза крови и мышечный гликоген. За время восстановления (а для полного восстановления может потребоваться до 30 мин) лактат удаляется из крови печенью и превращается в глюкозу крови путем глюконеогенеза, который мы описали выше. Глюкоза крови возвращается в мышцы, и здесь из нее образуется гликоген (рис. 20-5). Поскольку на образова- [c.608]

    У человека известен ряд генетических болезней, связанных с нарушением синтеза или распада гликогена. Одним из первых был описан случай хронического увеличения печени-у 8-летней девочки, у которой наблюдались также различного рода нарушения обмена. Девочка умерла от гриппа. Вскрытие показало, что ее печень была в 3 раза больше нормы в ней содержалось огромное количество гликогена на долю его приходилось почти 40% сухого веса органа. Выделенный из печени гликоген в химическом отношении оказался вполне нормальным, однако, когда кусочек ткани печени гомогенизировали и инкубировали в буфере, этот гликоген так и остался интактным-ни лактат, ни глюкоза не образовались. Когда же к гликогену добавили суспензию, приготовленную из ткани нормальной печени, то очень быстро произошло его расщепление до глюкозы. На основании этой биохимической проверки исследователи пришли к выводу, что у больной был нарушен процесс расщепления гликогена (эту болезнь часто называют болезнью Гирке по имени описавшего ее врача). Сначала предполагалось, что дефектным ферментом была в этом случае глюкозо-6-фос-фатаза, поскольку больная печень не образовывала глюкозы однако отсутствие образования лактата указывало на то, что дефект затрагивал либо гликоген-фосфорилазу, либо дебранчинг-фермент [а(1 - 6)-глюкозидазу]. Позже исследователи укрепились в мнении, что в этом классическом случае была затронута именно а(1 - 6)-глюкозидаза. Вследствие этого в молекулах гликогена, находящихся в печени, могли расщепляться с образованием глюкозы или [c.616]

    В качестве топлива скелетные мышцы в зависимости от степени их активности используют глюкозу, свободные жирные кислоты или кетоновые тела. В покоящихся мышцах основными субстраташ энергетического обмена служат свободные жирные кислоты и кетоновые тела, доставляемые с кровью из печени. Эти субстраты подвергаются окислению и распаду до ацетил-СоА, который вступает далее в цикл лимонной кислоты, и окисляется до СО2. Сопутствующий перенос электронов к кислороду обеспечивает энергией процесс окислительного фосфорилирования и превращение ADP в АТР. При умеренной нагрузке в дополнение к жирным кислотам и кетоновым телам мышцы используют еще и глюкозу крови. При этом глюкоза подвергается фосфорилированию и распадается в ходе гликолиза до пирувата, который далее через ацетил-СоА окисляется в цикле лимонной кислоты. Наконец, при максимальной мышечной нагрузке расход АТР на сокращение настолько велик, что скорость доставки субстратов (топлива) и кислорода кровью оказывается недостаточной. В этих условиях в ход идет накопленный в самих мышцах гликоген, который расщепляется до лактата путем анаэробного гликолиза при этом на один расщепившийся остаток глю- [c.756]

Рис. 24-12. Взаимосвязь обмена веществ в скелетных мышцах и в печени. При тяжелой физической нагрузке источником энергии для скелетных мыищ служит гликоген, распадающийся гликолитическим путем. В восстановительный период часть образовавшегося в мышцах лактата переносится в печень и превращается в глюкозу, которая поступает в кровь и доставляется в мышцы, где используется для восполнения запасов гликогена. Рис. 24-12. Взаимосвязь обмена веществ в <a href="/info/169225">скелетных мышцах</a> и в печени. При <a href="/info/519545">тяжелой</a> <a href="/info/87596">физической</a> нагрузке <a href="/info/188487">источником энергии</a> для скелетных мыищ служит <a href="/info/449">гликоген</a>, распадающийся <a href="/info/168829">гликолитическим путем</a>. В <a href="/info/1893841">восстановительный период</a> часть образовавшегося в <a href="/info/566826">мышцах лактата</a> переносится в печень и превращается в глюкозу, которая поступает в кровь и доставляется в мышцы, где используется для восполнения запасов гликогена.
    Отсюда следует, что меченый углерод из ацетилкофермента А (или ацетоуксусиой кислоты) должен попасть в молекулу щавелевоуксусной кислоты после одного оборота цикла. С другой стороны, меченый углерод в СОг происходит из С-лактата, который предварительно превращается в щавелевоуксусную кислоту. Этот неизбежный перекрест метаболических процессов является следствием стерических особенностей молекулы цитрата, на что впервые обратил внимание А. Б. Огстон [30 . Именно в результате этого явления радиоактивный изотоп из жирной кислоты попадает в глюкозу или гликоген, хотя у млекопитающих нет системы прямого синтеза этих соединений из жирных кислот. [c.23]

    При наличии метаболической энергии в печени и почках млекопитающих из предшественников с короткими углеродными цепями может синтезироваться глюкоза, а следовательно, пентозы, гликоген и другие полисахариды. Предшественниками могут быть 1) пируват или лактат 2) так называемые гликогенные аминокислоты (см. гл. XVII) 3) любой другой компонент, который в процессе катаболизма может быть превращен в пируват или один из метаболитов цикла лимонной кислоты. В покоящейся скелетной мышце (но не в сердечной и не в гладкой мышце) фосфорилированные трехуглеродные соединения, в особенности а-глицерофосфат, снова превращаются в гли- [c.299]

    Заменители глицерина. Уже давно делались попытки заменить глицерин, получаемый из природного сырья (жиров), более легко доступным продуктом. Так, например, вначале применяли в газовых часах вместо глицерина раствор лактата. Уже был описан синтез р-метилгли-церина из изобутилепа правда, этот заменитель глицерина не очень устойчив, так как легко подвергается различным изменениям, поскольку гидроксильная группа связана с третичным атомом углерода. В Германии, например, па рынке появился заменитель глицерина — гликоген . Он представлял смесь 40% глицерина, 40% пропиленгликоля и 20% гекси-лового спирта, получаюш,уюся гидрированием глюкозы в трубчатом аппарате при 80—200° и 300 ат в присутствии суспензии никеля как катализатора. Иа заводе И. Г. Фарбениндустри в г. Хохсте этим способом получали 1500 т год гликогена . Фирма И. Г. Фарбениндустри производила также трехатомный спирт — бутантриол, изомерный метилглицерину, но обладающий большей стойкостью, чем последний. Его получали из ацетилепа и формальдегида по методу Реппе в несколько стадий  [c.380]

    Известен ряд генетически детерминированных болезней накопления гликогена. Установлено, что в печени пораженных болезнью Гирке типа I отсутствует глюкозо-6-фосфатаза. Это вызывает гипогликемию, так как не происходит образования глюкозы из глюкозо-6-фосфата. Фосфорилированный сахар не покидает печень, поскольку не может пересечь плазматическую мембрану. Происходит компенсаторное усиление гликолиза в печени, обусловливающее повышенное содержание лактата и пирувата в крови. Гликоген печени у таких больных имеет нормальную структуру. Болезнь типа III характеризуется аномальной структурой гликогена мышц и печени и значительным увеличением его количества. Отклонением от нормы является очень маленькая длина внешних ветвей гликогена. У таких больных отсутствует фермент, разрывающий связи в местах ветвле- [c.181]

    Этот путь ресинтеза, так же как и креатинфосфатный, относится к анаэробным способам образования АТФ. Источником энергии, необходимой для ресинтеза АТФ, в данном случае является мышечный гликоген, концентрация которого в саркоплазме колеблется в пределах 0,2-3%. При анаэробном распаде гликогена от его молекулы под воздействием фермента фосфорилазы поочередно отщепляются концевые остатки глюкозы в форме глюкозо-1-фосфата. Далее молекулы глюко-30-1-фосфата через ряд последовательных стадий (их всего 10) превращаются в молочную кислоту (лактат), которая по своему химическому составу является как бы половинкой молекулы глюкозы. В процессе анаэробного распада гликогена до молочной кислоты, называемого гликолизом, образуются промежуточные продукты, содержащие фосфатную группу с макроэргической связью, которая легко переносится на АДФ с образованием АТФ. [c.144]

    Скелетная мышца использует в качестве топлива глюкозу, превращая ее в лактат и СО,. Запасаемый мышцей гликоген используется как топливо в процессе мышечного сокращения. В мышце осуществляется синтез мышечных белков из аминокислот плазмы. На долю мышечной ткани приходится около 50% всей массы оргайизма таким образом, она содержит значительный запас белка, который может быть использован для пополнения аминокислот плазмы крови, особенно в те периоды, когда их недостаточно в пищевом рационе. [c.168]

    При изучении биохимических изменений в ходе мышечного сокращения было установлено, что при функционировании мышцы в анаэробной (бескислородной) среде происходит исчезновение гликогена и появление пирувата и лактата в качестве главных конечных продуктов. Если затем обеспечить поступление кислорода, наблюдается аэробное восстановление образуется гликоген, и исчезают пируват и лактат. При работе мышцы в аэробных условиях накопления лактата не происходит, а пируват окисляется далее, превращаясь в СО, и Н О. В результате этих наблюдений утвердилось разделение метаболизма углеводов на анаэробную и аэробную фазы. Однако это разделение носит условный характер, так как реакции гликолиза в присутствии кислорода и в его отсутствие одни и те же,— различия касаются лишь их скорости и конечных продуктов. При недостатке кислорода реокисление NADH, образовавшегося из NAD в ходе гликолиза, осуществляется путем сопряжения с восстановлением пирувата в лактат образовавшийся при этом NAD обеспечивает дальнейшее протекание реакций гликолиза (рис. 18.1). Таким образом, гликолиз может идти в анаэробных условиях, но за это приходится расплачиваться, получая меньшее количество энергии на моль утилизированной глюкозы. Следовательно, для производства данного количества энергии путем гликолиза при анаэробных условиях требуются большие количества глюкозы, чем при аэробных. [c.181]


Смотреть страницы где упоминается термин Гликоген лактат: [c.380]    [c.345]    [c.130]    [c.602]    [c.620]    [c.757]    [c.53]    [c.366]    [c.40]    [c.4]    [c.168]   
Биохимия Том 3 (1980) -- [ c.336 ]




ПОИСК





Смотрите так же термины и статьи:

Гликоген



© 2025 chem21.info Реклама на сайте