Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Лактат в мышцах

    Брожение является также жизненно важным процессом и для человеческого организма. Хотя в обычных условиях наши мышцы получают вполне достаточные количества кислорода, чтобы произошло окисление пирувата и образование АТР аэробным путем, бывают обстоятельства, когда поступление кислорода оказывается недостаточным. Например, при крайнем напряжении сил, когда уже весь запас кислорода израсходован, мышечные клетки образуют лактат путем брожения. Более того, в белых мышцах рыб или домашней птицы аэробный метаболизм относительно невелик, и основным конечным продуктом оказывается L-лактат. В организме человека есть такие ткани, которые слабо снабжаются кровью, например хрусталик и роговица глаза. В клетках этих тканей окислительный метаболизм выражен слабо, а энергия в основном образуется при сбраживании глюкозы в лактат. [c.345]


    Часть лактата, образующегося в мышцах и других тканях, поступает в кровь и переносится в печень, где он снова окисляется в пируват. Меньшая часть пирувата затем окисляется в цикле трикарбоновых кислот, но большая его часть снова превращается в глюкозу (гл. 11, разд. Г, 5). Последняя может опять поступать в кровь и возвращаться в мышцы. Весь этот процесс называется циклом Кори ). [c.345]

    При аэробных условиях пируват проникает в митохондрии, где полностью окисляется до СО, и Н,0. Если содержание кислорода недостаточно, как это может иметь место в активно сокращающейся мышце, пируват превращается в лактат. [c.327]

    Таким образом, в тканях, функционирующих в условиях гипоксии, наблюдается образование лактата. Это особенно справедливо в отношении скелетной мышцы, интенсивность работы которой в определенных пределах не зависит от поступления кислорода. Гликолиз в эритроцитах даже в аэробных условиях всегда завершается образованием лактата, поскольку в них отсутствуют митохондрии, содержащие ферменты аэробного окисления пирувата. [c.247]

    Медлительны и вялы, например, большую часть времени аллигаторы и другие крокодилы, однако эти рептилии способны к молниеносной атаке и столь же быстрому нанесению опасных ударов мощным хвостом. Такие бурные вспышки активности коротки за ними неизменно следует долгий период восстановления сил. Для быстрых движений, когда в них возникает необходимость, АТР генерируется в белых скелетных мышцах этих животных путем анаэробного гликолиза. Поскольку запас гликогена в мышцах не очень велик, при напряженной работе мышц он быстро истощается. Кроме того, в мышцах и во внеклеточной жидкости при таких вспышках активности в очень большом количестве накапливается продукт анаэробного гликолиза лактат. В то время как тренированному спортсмену после бега на 100 м для восстановления нормального состояния достаточно каких-нибудь 30 мин, аллигатору после резкого броска может потребоваться многочасовой отдых с повышенным потреблением кислорода, для того чтобы из его крови был выведен избыток лактата, а в мышцах восстановился запас гликогена. [c.443]

    Позднее мы ответим на этот важный вопрос более подробно (гл. 25), сейчас же скажем только, что если организм оказывается внезапно в критической ситуации, то мозговое вещество надпочечника выделяет в кровь гормон адреналин, который служит молекулярным сигналом для печени и мышц. Под влиянием этого сигнала печень включает свою гликоген-фосфорилазу, в результате чего повышается уровень глюкозы в крови, т.е. мышцы получают топливо. Этот же сигнал включает в скелетных мышцах расщепление гликогена с образованием лактата, благодаря чему усиливается [c.464]


Рис. 20-5. Взаимодействие скелетных мышц и печени в процессе восстановления после тяжелой мышечной работы, во время которой происходит анаэробное расщепление гликогена с образованием двух молекул лактата и двух молекул АТР на каждую расщепленную глюкозную единицу. В период восстановления (показано красным) лактат, поступивший из мышц в кровь, превращается в печени в глюкозу крови. На образование одной молекулы глюкозы из двух молекул лактата расходуется шесть молекул АТР. Г люкоза доставляется кровью обратно в мышцы и откладывается здесь в запас в виде гликогена. Рис. 20-5. Взаимодействие <a href="/info/102654">скелетных мышц</a> и печени в <a href="/info/221483">процессе восстановления</a> после тяжелой <a href="/info/101556">мышечной работы</a>, во время <a href="/info/1481749">которой происходит</a> анаэробное расщепление гликогена с образованием <a href="/info/1696521">двух</a> молекул лактата и <a href="/info/1696521">двух</a> молекул АТР на каждую расщепленную глюкозную единицу. В период восстановления (показано красным) лактат, поступивший из мышц в кровь, превращается в печени в <a href="/info/187192">глюкозу крови</a>. На образование одной молекулы глюкозы из <a href="/info/1696521">двух</a> молекул лактата расходуется <a href="/info/1679830">шесть молекул</a> АТР. Г люкоза доставляется кровью обратно в мышцы и откладывается здесь в запас в виде гликогена.
    Метаболизм скелетных мышц специализирован на выработке АТР, необходимого для их сокращения и расслабления. При интенсивной мышечной нагрузке основным топливом служит гликоген, который превращается в лактат. В период отдыха лактат превращается снова в гликоген печени и глюкозу. Мозг использует в качестве топлива только глюкозу и р-гидроксибутират, причем последний играет важную роль при голодании. Большая часть энергии АТР в мозгу расходуется на активный транспорт ионов Na и К и на поддержание потенциала действия мембран нервных клеток. [c.775]

    Большая физическая нагрузка требует увеличения выработки АТР, что удовлетворяется за счет повышенного потребления кислорода. Во время спринта мышцы превращают часть гликогена в лактат. По окончании спринта лактат переносится в печень, где он снова превращается в глюкозу и гликоген. Для этого процесса требуется АТР, а следовательно, и кислород в дополнительном по сравнению с состоянием покоя количестве. [c.999]

    Мы ограничимся здесь рассмотрением только того ряда реакций, для которого была впервые разработана эта схема (сокращенно ее называют схемой ЭМП). Речь идет о превращении глюкозы в этанол и СОг при спиртовом брожении в дрожжевых клетках и о превращении глюкозы или остатка глюкозы (происходящего из гликогена) в молочную кислоту (точнее, в ее соль — лактат) в мышцах животных. Ни тот, ни другой процесс не требуют кислорода. Оба они могут происходить в полностью анаэробных условиях и в этих условиях обеспечивать клетку всей необходимой энергией. Последовательность реакций гликолиза и промежуточные продукты этого процесса показаны на фиг. 85, а некоторые характеристики реакций, в том числе их термодинамические параметры и свойства соответствующих ферментов, суммированы в табл. 33 и 34. Прежде чем перейти к рассмотрению индивидуальных реакций, отметим наиболее важные особенности общей схемы. [c.278]

    Оба пути превращения глюкозы используют одни и те же реакции, начиная от глюкозо-6-фосфата и кончая пируватом. Единственное различие между ними связано с конечной судьбой пирувата и, следовательно, также с тем, каким путем происходит регенерация НАД" " из восстановленного НАД (см. ниже, пункт 3). Сказанное относится и ко всем прочим метаболическим цепям реакций, в которых остаток гексозы вначале превращается в две молекулы пирувата. При гликолизе в мышцах пируват и восстановленный НАД непосредственно взаимодействуют друг с другом в присутствии лактатдегидрогеназы, следствием чего является образование лактата и регенерация НАД+ (табл. 33, реакция 13). При спиртовом брожении пируват сначала декарбоксилируется до ацетальдегида (табл. 33, реакция 14), а затем последний восстанавливается восстановленным НАД с образованием спирта. [c.278]

    Э. М. Плисецкой и Л. Г. Огородниковой, показали, что под влиянием инсулина в мышцах куриных эмбрионов отчетливо уменьшается содержание молочной кислоты (рис. 3). Это уменьшение вполне отчетливо выражено у зародышей моложе 15—16 дней. У более зрелых эмбрионов оно может быть обнаружено лишь в отдельных случаях, а у вылупившихся цыплят совсем отсутствует. Как показало одновременное определение содержания сахара в крови, уменьшение концентрации лактата в мышцах может быть легче всего объяснено резкой гипогликемией. Между степенью ее и понижением [c.185]

    В нормальных условиях большая часть лактата, образующегося в мышце, вымывается в кровяное русло. Изменению pH крови препятствует бикарбонатная буферная система у спортсменов буферная емкость крови повышена, и они могут переносить более высокое содержание в крови лактата. Попутно можно добавить, что буферная емкость крови необычайно высока у таких позвоночных, как, например, водяные черепахи, которые способны выдерживать крайнюю степень аноксии (стр. 58). [c.52]

    Вероятно, самый важный механизм устойчивости к большим количествам лактата—это выработка приспособлений для метаболического использования лактата, образующегося в мышцах. После окончания периода аноксии часть этого лактата [c.52]

    Пируват Лактат Мышцы, гомо-ферментатив-ные молочнокислые бактерии [c.65]


    РИС. 6-9. А. Зависимость скорости реакции, катализируемой дрожжевой гексокиназой в равновесных условиях (Ueq), от концентрации глюкозо-6-фосфата при постоянном отношении концентрации глюкозы к концентрации глюкозо-6-фосфата, равном 1/19 [37]. Реакционные смеси содержали 1—2,2 мМ АТР и 25,6 мМ ADP (pH 6,5). Б. Зависимость скорости реакции, катализируемой лактатдегидрогеназой из скелетных мышц кролика в равновесных условиях ( eq), от концентрации лактата при постоянном отношении концентрации пирувата к концентрации лактата, равном 1/35 [38]. Реакционные смеси содержали 1,7 мМ NAD, 30—46 мкМ NADH (трис-цитратный буфер, pH [c.34]

    Хотя природа этого ингибирования продуктом неясна ), целесообразность его, по-видимому, можно понять (по крайней мере в какой-то степени) для такого аэробногох> органа, как печень, в которой пируват удаляется окислением избыточная же активность лактатдегидрогеназы подавляется в ней при накоплении пирувата. В то же время изофермент 2 скелетной мышцы не ингибируется избытком пирувата и отвечает требованиям, предъявляемым к ферменту, который должен восстанавливать пируват до лактата при увеличении мышечной активности ). [c.67]

    Открытие гликолиза последовало непосредственно за экспериментами Бюхнера, а также Гардена и Ионга по сбраживанию сахара дрожжевым соком (гл. 8, разд. 3). Вскоре с изучением спиртового брожения слились исследования другого направления, связанные с изучением мыщц. Физиологи заинтересовались процессом, благодаря которому изолированная мышца могла получать энергию для сокращения в отсутствие кислорода. Хилл показал, что энергию обеспечивает превращение гликогена в лактат, а несколько позднее Мейергоф продемонстрировал, что происходящие при этом химические реакции сходны с теми, которые наблюдаются при спиртовом брожении. Установление структуры и функции пиридиннуклеотидов в 1934 г. (гл. 8, разд. 3) совпало по времени с важными исследованиями по изучению гликолиза, проведенными Эмбденом во Франкфурте и Парнасом в Польше. Таким путем вскоре была выяснена последовательность реакций гликолиза (путь Эмбдена — Мейергофа — Парнаса). Все ферменты, катализирующие отдельные стадии процесса, к настоящему времени выделены, закристаллизованы и подробно изучены. [c.336]

    Метаболизм глюкозы у животных имеет две наиболее важные особенности [44]. Первая из них — это запасание гликогена, который в случае необходимости может быть быстро использован в качестве источника мышечной энергии. Однако скорость гликолиза может оказаться высокой — весь запас гликогена в мышце может быть истощен всего лишь за 20 с при анаэробном брожении или за 3,5 мин в случае окислительного метаболизма [45]. Таким образом, должен существовать способ быстрого включения гликолиза и его выключения после того, как необходимость в нем исчезнет. В то же время должна иметься возможность обратного превращения лактата в глюкозу или в гликоген (глю-конеогенез). Запас глюкогена, содержащегося в мышцах, должен пополняться за счет глюкозы крови. Если количество глюкозы, поступающей с пищей или извлекаемой из гликогена печени, оказывается недостаточным, то она должна синтезироваться из аминокислот. [c.503]

    В качестве еще одного примера регуляции этого типа можно привести превращения, протекающие при работе мышц. Источником АТФ, необходимой для интенсивной мышечной деятельности, является превращение глюкозы. На первой фазе глюкоза в результате цепи гликолитических превращений образует пируват. Однако дальнейшее окислительное превращение пирувата требует адекватной доставки в мышцы кислорода. Если создается дефицит последнего, то в мышечной ткани накапливаются пируват и восстановленный никотинамидный кофермент. В результате действия мышечной лактат дегидрогеназы происходит их превращение в NAD и лактат, что обеспечивает регенерацию NAD, необходимого для дальнейшего течения гликолиза, и образование некоторого количества АТФ в результате фосфорилирования АДФ дифосфоглицератом и фосфоенолпирува-том. В мышцах при этом начинает накапливаться молочная кислота. После окончания периода интенсивной мышечной деятельности образование NAD-H существенно замедляется и доставка кислорода в мышцы обеспечивает необходимый масштаб функционирования цепи переноса электронов, основная часть NAD-H переходит в NAD и та же лактат дегидрогеназа обеспечивает постепенное превращение накопившегося лактата в пируват, который через стадию окислительного декарбоксилирования поступает на конечное сжигание в цикле трикарбоновых кислот. [c.422]

    После того как в мыщцах истощается запас гликогена, основным источником пирувата становятся аминокислоты, образующиеся после деградации белков. При этом более 30% аминокислот, поступающих из крови в печень, приходится на аланин — одну из гликогенных аминокислот, углеродный скелет которой используется в печени как предшественник для синтеза глюкозы. Механизм превращения мышечных аминокислот в аланин, схема его участия в глюконеогенезе представлены в гл. 24. Другим источником пирувата является лактат, который накапливается в интенсивно работающих мышцах в процессе анаэробного гликолиза, когда митохондрии не успевают реокислить накапливающийся НАДН. Лактат транспортируется в печень, где снова превращается в пируват, а затем в глюкозу и гликоген. Этот физиологический цикл (рис. 20.2) называют циклом Кори (по имени его первооткрывателя). У цикла Кори две функции — сберечь лактат для последующего синтеза глюкозы в печени и предотвратить развитие ацидоза. [c.273]

    Большинство позвоночных-это по преимуществу аэробные организмы глюкоза у них сначала правращается в процессе гликолиза в пируват, а затем этот пируват претерпевает полное окисление до СО2 и Н2О под действием молекулярного кислорода. У большинства позвоночных, и в частности у человека, анаэробный гликолиз включается только на короткое время при напряженной работе мышц, например при беге на 100 м, т. е. в такие моменты, когда кислород не успевает достаточно быстро поступать в ткани и не успевает обеспечивать окисление пирувата и сопряженный с ним синтез АТР. Мышцы при этом используют в качестве топлива имеющийся в них запас гликогена и генерируют АТР посредством анаэробного гликолиза, конечным продуктом которого является лактат. Поэтому при беге на короткие дистанции в крови в весьма значительных количествах накапливается лактат. Позднее, в период восстановления, этот лактат медленно превращается в печени обратно в глюкозу на протяжении периода восстановления потребление кислорода постепенно снижается до тех пор, пока не установится, наконец, нормальная интенсивность дыхания. Избыточное количество кислорода, потребленное за период восстановления, служит мерой кислородной задолженности. Это количество кислорода требуется для синтеза (в процессе дыхания) соответствующего количества АТР, которого должно хватить на то, чтобы пополнить израсходованный запас гликогена в печени и в мьшщах, т. е. ликвидировать задолженность , возникшую вследствие усиленной работы мышц во время бега. [c.442]

    Гликолиз, в ходе которого молекула D-глюкозы превращается в две молекулы пирувата, является для большинства организмов одним из центральных метаболических путей, используемых для получения химической энергии в форме АТР. При анаэробных условиях пируват в большей части животных и растительных тканей восстанавливается до лактата, а в дрожжевых клетках в процессе спиртового брожения превращается в этанол и СО2- Суммарное уравнение для анаэробного гликолиза в мышцах и для молочнокислого брожения, вызываемого некоторыми видами микроорганизмов, имеет вид Глюкоза -I- 2ADP - - 2Р, -  [c.471]

    Вторая стадия гликолиза в скелетных мышцах. В работающей скелетной мышце при анаэробных условиях глицеральдегид-З-фосфат превращается в лактат (вторая стадия гликолиза). Напииште уравнения химического баланса для последовательности реакций в этом процессе с указанием изменения стандартной свободной энергии для каждой из реакций. Напишите также суммарное уравнение для второй стадии гликолиза и укажите суммарное изменение стандартной свободной эн гии для этой стадии. [c.472]

    Синтез глюкозы из малых молекул-предшественников идет с особенно большой скоростью в период восстановления после мышечной нагрузки, требующей напряжения всех сил, например после бега на 100 м (дополнение 15-1). При такой интенсивной мышечной работе потребность скелетных мыпщ в АТР неизмеримо возрастает и циркуляторная система уже не успевает доставлять к ним глюкозу и кислород достаточно быстро для того, чтобы эту потребность удовлетворить. В этом случае в качестве резервного топлива используется мышечный гликоген, быстро расщепляющийся в процессе гликолиза с образованием лактата это сопровождается синтезом АТР, который и служит источником энергии для мышечного сокращения. Поскольку в таких условиях кислорода не хватает, лактат не может подвергнуться в мышцах дальнейшим превращениям и диффундирует в кровь, так что его содержание в крови может быть очень высоким. Закончивший стометровку спринтер вначале дышит еще очень тяжело, но постепенно его дыхание выравнивается и через некоторое время вновь становится нормальным. В течение этого периода восстановления возвращается к нормальному низкому уровню также и содержание лактата в крови. Значительная часть избытка кислорода, потребляемого в период восстановления (этот избыток служит мерой так называемой кислородной задолженности), расходуется на образование АТР, который необходим для того, чтобы из лактата, образовавшегося анаэробно во время спринтерского бега, могли быть ресинтезированы глюкоза крови и мышечный гликоген. За время восстановления (а для полного восстановления может потребоваться до 30 мин) лактат удаляется из крови печенью и превращается в глюкозу крови путем глюконеогенеза, который мы описали выше. Глюкоза крови возвращается в мышцы, и здесь из нее образуется гликоген (рис. 20-5). Поскольку на образова- [c.608]

    В качестве топлива скелетные мышцы в зависимости от степени их активности используют глюкозу, свободные жирные кислоты или кетоновые тела. В покоящихся мышцах основными субстраташ энергетического обмена служат свободные жирные кислоты и кетоновые тела, доставляемые с кровью из печени. Эти субстраты подвергаются окислению и распаду до ацетил-СоА, который вступает далее в цикл лимонной кислоты, и окисляется до СО2. Сопутствующий перенос электронов к кислороду обеспечивает энергией процесс окислительного фосфорилирования и превращение ADP в АТР. При умеренной нагрузке в дополнение к жирным кислотам и кетоновым телам мышцы используют еще и глюкозу крови. При этом глюкоза подвергается фосфорилированию и распадается в ходе гликолиза до пирувата, который далее через ацетил-СоА окисляется в цикле лимонной кислоты. Наконец, при максимальной мышечной нагрузке расход АТР на сокращение настолько велик, что скорость доставки субстратов (топлива) и кислорода кровью оказывается недостаточной. В этих условиях в ход идет накопленный в самих мышцах гликоген, который расщепляется до лактата путем анаэробного гликолиза при этом на один расщепившийся остаток глю- [c.756]

    Запасы гликогена в мышцах, однако, невелики, и потому существует верхний предел того количества энергии, которое вырабатывается в ходе гликолиза, в условиях максимальной (например, при спринте) нагрузки. Более того, накопление молочной кислоты и связанное с этим снижение pH, а также повышение температуры, происходящее при очень высокой мышечной активности, снижают эффективность обмена в мыпщах. Так, в период восстановления после максимальной мышечной нагрузки атлет продолжает еще некоторое время тяжело дышать. Потребляемый при этом дополнительный кислород используется для окисления пирувата, лактата и других субстратов, а также регенерации АТР и фосфокреатина в мышцах. Одновременно лактат крови превращается в печени путем глюконеогенеза в поступающую в кровь глюкозу, которая попадает [c.757]

Рис. 24-12. Взаимосвязь обмена веществ в скелетных мышцах и в печени. При тяжелой физической нагрузке источником энергии для скелетных мыищ служит гликоген, распадающийся гликолитическим путем. В восстановительный период часть образовавшегося в мышцах лактата переносится в печень и превращается в глюкозу, которая поступает в кровь и доставляется в мышцы, где используется для восполнения запасов гликогена. Рис. 24-12. Взаимосвязь обмена веществ в <a href="/info/102654">скелетных мышцах</a> и в печени. При <a href="/info/14316">тяжелой физической</a> нагрузке <a href="/info/98823">источником энергии</a> для скелетных мыищ служит гликоген, распадающийся <a href="/info/168829">гликолитическим путем</a>. В <a href="/info/1431411">восстановительный период</a> часть образовавшегося в мышцах лактата переносится в печень и превращается в глюкозу, которая поступает в кровь и доставляется в мышцы, где используется для восполнения запасов гликогена.
    Оба конечных продукта (лактат или этанол + СО2) накапливаются в анаэробных условиях. Наиболее эффективным способом удаления этих двух органических соединений является их полное окисление до СО2 и Н2О. Для осуществления этого процесса необходимы аэробные условия, которые могут быть созданы либо тогда, когда одна и та же клетка способна взаидю-действовать с разным физиологическим окружением и функционировать в Нем (таковы, например, дрожжи и некоторые клетки млекопитающих), либо в том случае, когда, как у высших организмов, для разных физиологических условий существуют разные, специализированные клетки (например, когда лактат, образовавшийся в скелетных мышцах, уносится кровью и транснортируется в печень для окисления). [c.282]

    При наличии метаболической энергии в печени и почках млекопитающих из предшественников с короткими углеродными цепями может синтезироваться глюкоза, а следовательно, пентозы, гликоген и другие полисахариды. Предшественниками могут быть 1) пируват или лактат 2) так называемые гликогенные аминокислоты (см. гл. XVII) 3) любой другой компонент, который в процессе катаболизма может быть превращен в пируват или один из метаболитов цикла лимонной кислоты. В покоящейся скелетной мышце (но не в сердечной и не в гладкой мышце) фосфорилированные трехуглеродные соединения, в особенности а-глицерофосфат, снова превращаются в гли- [c.299]

    Быть может, уместно именно здесь рассмотреть те факторы, которые (в кивотных клетках) играют главную роль в регулировании распада и ресинтеза глюкозы (и гликогена), иными словами, факторы, регулирующие обмен этих соединений. В общем можно считать, что во всех клетках, способных расщеплять глюкозу как в присутствии, так и в отсутствие кислорода, этот углевод исчезает (а лактат или же любой другой продукт анаэробного гликолиза или брожения накапливается) в анаэробных условиях быстрее, чем в аэробных. Это торможение гликолиза кислородом, впервые подмеченное Пастером, а впоследствии подтвержденное Мейергофом и Варбургом, известно под названием эффекта Пастера. Другое явление было открыто А. Хиллом в экспериментах с мышцей. Хилл обнаружил, что ресинтез гликогена и вообще углеводов протекает быстрее в аэробных условиях. Позднее это было доказано и для других тканей и клеток. [c.300]

    Можно утверждать, что с анализа реакций, посредством которых у дрожжей, а также в мышцах гексозы превращаются в пируват, лактат и этиловый спирт, в сущности говоря, и началась современная биохимия. Эти исследования, как известно, были начаты Бухнером в 1897 г. и успешно продолжены в течение первых четырех десятилетий XX столетия Гарденом и Йонгом, Робинсоном, Мейергофом, Нейбергом, Эмбденом, Парнасом, Нидхемом, Кори и Кори и Варбургом. Этот путь превращений, известный в настоящее время как гли-колитический путь Эмбдена — Мейергофа, по- [c.112]

    Эти процессы настолько тесно интегрированы, что при аноксии образование молочной кислоты прямо пропорционально работе мышечного сокращения, и мышца способна переносить такие количества лактата, какие никогда не встречаются в других тканях. Таким образом, последнее функциональное требование, которое предъявляет мышечный гликолиз, — это возможность накопления больших количеств лактата и его последующего метаболизироваиия. [c.51]

    Как мы уже говорили, важным моментом адаптации энергетического обмена мышечной ткани к недостатку О2 является развитие толерантности к накоплению больших количеств молочной кислоты. Один из факторов, обусловливающих эту толерантность,— способность к переработке лактата после окончания анаэробной мышечной работы. Большая часть лактата вымывается из мышц кровью и попадает в печень, где происходит его превращение в глюкозу Какой сигнал обеспечивает интеграцию этих специфических обменных функций в двух различных тканях По видимому, таким сигналом служит легкий ацидоз, вызываемый появлением в крови больших количеств молочной кислоты, которые транспортируются к тканям, способным к глюкогенезу. [c.56]

    На энзимологическом уровне существенную причину этого можно усмотреть в кинетических особенностях лактатдегидро-геназ у рыб ингибирование этого фермента пируватом сильно зависит от температуры. Например, на ЛДГ из мышц СИИсЫкуз при высоких температурах пируват даже в больших концентрациях (2 мМ) не оказывает ингибирующего действия, а при более низких температурах наблюдается резкое ингибирование (рис. 20). Сходные результаты были получены для ряда других ЛДГ пойкилотермных животных. Этим свойством, возможно, и объясняется отсутствие накопления лактата у карпа, находящегося в покое, при низкой температуре. [c.73]


Смотреть страницы где упоминается термин Лактат в мышцах: [c.365]    [c.365]    [c.311]    [c.483]    [c.345]    [c.130]    [c.265]    [c.440]    [c.454]    [c.609]    [c.757]    [c.777]    [c.1000]    [c.186]    [c.48]    [c.53]   
Основы биохимии Т 1,2,3 (1985) -- [ c.442 , c.443 , c.609 , c.756 , c.757 ]




ПОИСК





Смотрите так же термины и статьи:

Мышца



© 2025 chem21.info Реклама на сайте