Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Плазмы аминокислоты

    Все биохимические процессы проходят в разбавленных водных растворах. Наиболее концентрированные растворы содержат лишь 7—9% белков (плазма крови). Известно, что протеолитические ферменты, ускоряющие гидролиз белков до дикетопиперазинов и даже свободных а-аминокислот, могут проводить процесс в обратном направлении. [c.507]


Таблица 17.2. Концентрация свободных аминокислот в плазме крови человека Таблица 17.2. <a href="/info/576539">Концентрация свободных</a> аминокислот в <a href="/info/91035">плазме крови</a> человека
    Никель, как и кобальт, относится к числу так называемых микроэлементов, хотя его биологические функции изучены в меньшей степени. Входит в состав многих растительных и животных организмов, стимулируя синтез аминокислот в клетке, ускоряя регенерацию белков плазмы крови, нормализуя содержание гемоглобина в больных организмах, а также выполняя ряд других важных ф ункций. [c.499]

    В состав остаточного азота входит также азот аминокислот и полипептидов. В крови постоянно содержится некоторое количество свободных аминокислот. Часть из них экзогенного происхождения, т.е. попадает в кровь из пищеварительного тракта, другая часть аминокислот образуется в результате распада белков ткани. Почти пятую часть содержащихся в плазме аминокислот составляют глутаминовая кислота и глутамин (табл. 17.2). Содержание свободных аминокислот в сыворотке и плазме крови практически одинаково, но отличается от уровня их в эритроцитах. В норме отношение концентрации азота аминокислот в эритроцитах к со- [c.581]

    Как видно из табл. 36, почти треть содержащихся в плазме аминокислот составляют глютаминовая кислота и глютамин. Это и понятно, поскольку глютамин, как уже отмечалось, является одним из важнейших соединений, в форме которых аммиак, освобождающийся в ткаиях, транспортируется с током крови в такие органы, как печень, почки и др. [c.443]

    Повышенное содержание в плазме аминокислот, потеря азота с мочой [c.255]

    О нарушении обмена аминокислот в целостном организме судят не только по количественному и качественному составу продуктов их обмена в крови и моче, но и по уровню самих свободных аминокислот в биологических жидкостях организма. Большинство тканей характеризуется своеобразным аминокислотным спектром . В плазме крови он примерно соответствует аминокислотному составу свободных аминокислот в органах и тканях, за исключением более низкого содержания глутамата и аспартата и более высокого уровня глутамина, на долю которого приходится до 25% от общего количества аминокислот. Цереброспинальная жидкость отличается меньшим содержанием почти всех аминокислот, кроме глутамина. Аминокислотный состав мочи резко отличается от аминокислотного состава плазмы крови. Оказывается, у человека, получающего полноценное питание, аминокислотный состав мочи более или менее постоянен изо дня в день, но у разных людей с почти одинаковым аминокислотным составом плазмы состав аминокислот в моче может оказаться совершенно различным. [c.464]


    Поддержание стационарных концентраций циркулирующих в плазме аминокислот в период между приемами пищи (например, в течение ночи после ужина) зависит от того, насколько сбалансировано поступление аминокислот из эндогенных запасов белка и их использование в различных тканях. На долю мышечной ткани приходится генерация более 50% общего пула свободных аминокислот, тогда как в печени локализованы ферменты цикла мочевины. [c.311]

    В сложных химических и биологических процессах нередко количество какого-то вещества остается постоянным не потому, что с веществом ничего не происходит, а потому, что количество вещества, образующегося из каких-либо предшественников, и количество вещества, исчезающего за тот же промежуток времени в результате свойственных ему превращений, оказывается одинаковым. Например, содержание белков в плазме крови в норме остается приблизительно постоянным однако на самом деле они непрерывно обновляются. Это нетрудно зарегистрировать, если ввести в кровь меченые аминокислоты, из которых синтезируются белки. При этом, помещая в счетчик радиоактивности белки, взятые через разные отрезки времени после инъекции аминокислот, можно увидеть, что белки становятся радиоактивными и их радиоактивность нара- [c.32]

    Электрофореграммы плазмы крови в. норме у всех людей дают почти одну и ту же картину (рнс. 84, а). Для патологии характерна совершенно иная и специфическая для каждого заболевания картина (рис. 84,6). Следовательно, электрофореграммы могут быть успешно использованы как для диагноза, так и для контроля за ходом болезни и нормализацией белкового состава крови. Метод широко используют также для разделения аминокислот, антибиотиков, ферментов, антител и других объектов. [c.215]

    Наконец, белки плазмы крови могут служить резервом аминокислот. [c.569]

    Содержание белка в цереброспинальной жидкости незначительно (0,15— 0,40 г/л), причем отношение альбумины/глобулины равно 4 липидов в сотни раз меньше, чем в плазме крови. Возможно, что липиды плазмы крови в цереброспинальной жидкости отсутствуют. Общее содержание низкомолекулярных азотсодержащих веществ, особенно аминокислот, в 2—2,5 раза меньше, чем в крови. В ткани мозга, как отмечалось, количество свободных аминокислот велико и во много раз превышает концентрацию их в крови и тем более в цереброспинальной жидкости. Установлено, что некоторые аминокислоты (например, глутаминовая кислота) почти не проникают через гематоэнцефалический барьер. В то же время амиды аминокислот (в частности, глутамин) легко преодолевают этот барьер. Содержание глюкозы в цереброспинальной жидкости относительно велико (2,50—4,16 ммоль/л), но несколько меньше, чем в крови, причем концентрация глюкозы в спинномозговой жидкости может повышаться или снижаться в зависимости от изменений содержания глюкозы в крови. [c.644]

    В качестве еще одного важного примера можно привести транспорт большого числа гидрофобных молекул в кровяном русле с помощью важнейшего компонента плазмы крови — сывороточною альбу.мина. Этот белок об.падает уникальной способностью образовывать прочные комплексы с жирными кислотами, образующимися при переваривании жиров, с некоторыми гидрофобными аминокислотами, например с триптофаном, со стероидными гормонами, а также со многими лекарственными препаратами, такими, как аспирин, сульфаниламиды, некоторые пенициллины. [c.36]

    Так как на один виток спирали приходится 3,6 аминокислотных остатка, можно представить диаграмму распределения аминокислот вдоль цепи af-спирали в виде круга, содержащего 18 секторов, каждый из которых соответствует определенной аминокислоте (рис. 131). Из диаграммы видно, что одна поверхность Qf-спирали оказывается полярной, а другая — гидрофобной. Такая структура своей гидрофобной областью будет легко взаимодействовать с гидрофобными липидами и в то же время ее полярная область будет обеспечивать растворимость в плазме крови. [c.438]

    И. X. применяется для разделения катионов металлов, напр, смесей лантаноидов и актиноидов, 2г и НГ, Мо и W, КЬ и Та последние разделяют на анионитах в виде анионных хлоридных комплексов в р-рах соляной и плавиковой к-т. Щелочные металлы разделяют на катионитах в водных и водно-орг. средах, щел.-зем. и редкоземельные металлы-на катионитах в присут. комплексонов. Большое значение имеет автоматич. анализ смесей прир. аминокислот на тонкодисперсном сульфокатионите.в цитратном буфере при повыш. т-ре. Аминокислоты детектируют фотометрически после их р-ции с нингидрином или флюориметрически после дериватизации фталевым альдегидом. Высокоэффективная И. X. (колонки, упакованные сорбентом с размером зерен 5-10 мкм, давление для прокачивания элюента до 10 Па) смесей нуклеотидов, нуклеозидов, пуриновых и пиримидиновых оснований и их метаболитов в биол. жидкостях (плазма крови, моча, лимфа и др.) используется для диагностики заболеваний. Белки и нуклеиновые к-ты разделяют с помощью И. X. на гидрофильных высокопроницаемых ионитах на основе целлюлозы, декстранов, синтетич. полимеров, широкопористых силикагелей гидрофильность матрицы ионита уменьшает неспецифич. взаимод. биополимера с сорбентом. В препаративных масштабах И. х. используют для вьщеления индивидуальных РЗЭ, алкалоидов, антибиотиков, ферментов, для переработки продуктов ядерных превращений. [c.264]


    Направление и гштенсивность обмена белков в первую очередь определяются физиологическим состоянием организма и несомненно регулируются, как и все другие ввды обмена, нейрогормональными факторами. Более интенсивно обмен белков протекает в детском возрасте, при активной мышечной работе, беременности и лактации, т.е. в случаях, когда резко повышаются потребности в белках. Существенное влияние на белковый обмен оказывает характер питания и, в частности, количественный и качественный белковый состав пищи. При недостаточном поступлении белков с пищей происходит распад собственных белков ряда тканей (печени, плазмы крови, слизистой оболочки кишечника и др.) с образованием свободных аминокислот, обеспечивающих синтез абсолютно необходимых цитоплазматических белков, ферментов, гормонов и других биологически активных соединений. Таким образом, в жертву приносятся некоторые строительные белки тканей для обеспечения жизнедеятельности целостного организма. Введение с пищей повышенных количеств белка, напротив, не оказывает заметного влияния на состояние белкового обмена, поскольку [c.411]

    В другом варианте обратнофазовой гидрофобной хроматографии плазмы крови на колонке Li hrosorb RP-8 элюцию вели в среде, подкисленной до рП 3 монохлоруксусной кислотой, используя выпуклый градиент концентрации ацетонитрила (0—45%) в смеси с 0,05 М раствором ДДС-Na (1,4%о). Последний, по-видимому, блокирует заряды аминогрупп и обеспечивает гидрофобность аминокислот, т. е. играет роль ион-парного агента, как подробнее описано ниже для случая фракционирования пептидов. [c.194]

    При анализе содержания в физиологических жидкостях свободных аминокислот встает задача предварительной полной очистки их от белков. Для малых объемов плазмы (5—25 мкл) была описана элегантная методика осаждения белка холодным (—30°) ацетоном в капилляре (100 X 0,6 мм) с последующим центрифугированием в нем же, после чего кончик капилляра с осадком белка просто обламывали [Arola et al., 1977]. [c.483]

    L-r. к. встречается во всех организмах в своб. виде (в плазме крови вместе с глутамином составляет ок. /з ех своб. аминокислот) и в составе белков. Р-ция L-Г. к. + + NHj + АТФ глутамин + АДФ + Н3РО4 (АДФ-аденозиндифосфат) играет важную роль в обмене NHj у животных и человека. В организме декарбоксилируется до у- [c.588]

    Известна также К. типа С, к-рая отщепляет от С-конца любые остатки аминокислот. Она выделена из плодов и листьев цитрусовых. В плазме крови человека функционирует К. типа N (ее каталитич. активность оптимальна при pH 7), сходная по субстратной специфичности с К. типа В. Этот фермент катализирует отщепление С-коицевого аргинина от находящегося в крови пептида брадикинина (см. Кинины), в результате чего этот пептид теряет способность понижать кровяное давление. [c.322]

    РЕШШ, фермент класса гидролаз, катализирующий гидролиз ангиотенз1шогена (гликопротеин плазмы крови) по единств, пептидной связи в области N-конца молекулы между двумя остатками лейцииа с образоваиием ангиотензина I (букв, обозначения см. в ст. Аминокислоты)  [c.238]

    Более надежным представляется использование условных констант, учитывающих физиологические условия. При наличии необходимой информации о константах устойчивости индивидуальных соединений, присутствующих в данной системе, можно с помощью ЭВМ оценить направление реакций, происходящих в организме. Так, применение компьютерных расчетов равновесий в растворе, содержащем одновременно ионы меди (II), цинка (II) и 22 аминокислоты, присутствующие в плазме крови [939], показало, что при рН=7,4 медь и цинк образуют смешанный комплекс с гистидином и цистеином. Таким образом, при прогнозировании результата введения в такую систему молекулы комплексона необходимо учитывать в качестве конкурирующих реакций не только образование биометаллами комплексов с аминокислотами, но и смешанно лигандных соединений. [c.493]

    Измерения метаболизма. Многие авторы (50 пытались вывести зависимость между содержанием свободных аминокислот в плазме или мышцах и питательной ценностью потребленного белка. Однако целесообразность применения этих методов для систематической оценки оспаривается [Lies, 1981 , так как содержание аминокислот зависит от динамического равновесия, обусловленного многими внешними факторами. Кроме того, эти методы слишком сложны для повседневного использования. [c.573]

    Нативные р-лактоглобулин и гормон роста медленно гидролизуются лейцинаминопептидазой нативные альбумины плазмы крови человека и быка, лизоцим и рибонуклеаза оказались устойчивыми к гидролизу. Однако предварительное окисление альбумина плазмы крови челов>ека, лизоцима и рибонуклеазы надмуравьиной кислотой привело к тому, что указанные субстраты гидролизовались ферментом и аминокислоты отщеплялись в ТРИ ПРСЛедовательчости, которая была [c.236]

    Печень играет центральную роль в обмене белков. Она выполняет следующие основные функции синтез специфических белков плазмы образование мочевины и мочевой кислоты синтез холина и креатина трансаминирование и дезаминирование аминокислот, что весьма важно для взаимных превращений аминокислот, а также для процесса глюконеогенеза и образования кетоновых тел. Все альбумины плазмы, 75—90% а-глобу-линов и 50% 3-глобулинов синтезируются гепатоцитами. Лишь у-гло-булины продуцируются не гепатоцитами, а системой макрофагов, к которой относятся звездчатые ретикулоэндотелиоциты (клетки Купфера). В основном у-глобулины образуются в печени. Печень является единственным органом, где синтезируются такие важные для организма белки, как протромбин, фибриноген, проконвертин и проакцелерин. [c.558]

    Содержание небелкового азота в цельной крови и плазме почти одинаково и составляет в крови 15—25 ммоль/л. Небелковый азот крови включает азот мочевины (50% от общего количества небелкового азота), аминокислот (25%), эрготионеина (8%), мочевой кислоты (4%), креатина (5%), креатинина (2,5%), аммиака и индикана (0,5%) и других небелковых веществ, содержащих азот (полипептиды, нуклеотиды, нуклеозиды, глутатион, билирубин, холин, гистамин и др.). Таким образом, в состав небелкового азота входит главным образом азот конечных продуктов обмена простых и сложных белков. [c.580]

    Аминокислоты в суточном количестве мочи составляют около 1,1 г. Соотношение между содержанием отдельных аминокислот в крови и моче неодинаково. Концентрация той или иной аминокислоты, вьвделяемой с мочой, зависит от ее содержания в плазме крови и степени ее реабсорбции [c.619]

    Фермент, называемый активатором тканевого плазминогена (tPA), - это сериновая протеина-за, состоящая из нескольких доменов ее используют в клинике для растворения сгустков крови. К сожалению, tPA быстро выводится из системы кровообращения, поэтому его приходится вводить путем инфузии. Чтобы добиться желаемого терапевтического эффекта, необходимо использовать высокие концентрации фермента, а это может приводить к неспецифическому внутреннему кровотечению. Таким образом, было бы весьма желательно получить долгоживущий фермент tPA, обладающий высоким сродством к фибрину в тромбах и не вызывающий кровотечения. Белок с такими свойствами можно получить, внося специфические мутации в ген нативного tPA. Заменив Thr-103 на Asn, получили фермент, сохраняющийся в плазме кролика примерно в 10 раз дольше, чем нативный вариант. Заменив аминокислоты 296—299 с Lys-His-Arg-Arg на А1а-А1а-А1а-А1а, добились существенного повышения сродства фермента к фибрину. Заменив Asn-117 на Gin, получили фермент с такой же фибринолитиче-ской активностью, как у исходного фермента. Внеся эти три мутации в один белок, получили фермент, обладающий всеми тремя свойствами (табл. 8.6). Чтобы выяснить, можно ли использовать его вместо нативного tPA, нужно провести дополнительные исследования. [c.174]

    Что касается аминокислот, входящих в состав гликопротеинов, то последние представлены чаще всего во всем их разнообразии, хотя можно отметить несколько интересных особенностей. Так, содержание ароматических и серусодержащих аминокислот обычно очень невелико. Отмече-но , что все известные гликопротеины по аминокислотному составу могут быть разделены на две довольно определенные группы. Гликопротеины одной группы, содержащие небольшой процент сахаров и близко стоящие к белкам, имеют обычный стандартный набор аминокислот к этой группе относятся гликопротеины плазмы и многие другие углеводсодержащие белки. Гликопротеины второй группы содержат относительно меньше аминокислот, но состав этих аминокислот более специфичен наиболее характерным признаком этой группы гликопротеинов является очень высокая доля оксиаминокислот (серина и треонина), которые в отдельных случаях, например в групповых веществах крови, составляют половину всех аминокислот аномально высоким бывает также содержание пролина и глицина.  [c.568]

    Авторы работы [288] предложили новый метод выделения аминокислот из биологических жидкостей свободный от недо статков ионообменной очистки Метод быстр, удобен при анали зе большого количества образцов и позволяет получить амино кислоты в форме, удобной для последующего ГХ и ГХ—МС анализа Физиологическая жидкость (например, плазма) под кисляется до pH = 2 и экстрагируется диэтиловым эфиром для [c.197]

    Кингстон и Даффилд [292] сообщают об определении шестнадцати а аминокислот в плазме крови методом СИД при выборе в качестве внутреннею С1андарт4 аминокислот, меченных [c.199]


Смотреть страницы где упоминается термин Плазмы аминокислоты: [c.29]    [c.659]    [c.669]    [c.81]    [c.139]    [c.375]    [c.340]    [c.263]    [c.582]    [c.183]    [c.198]    [c.198]    [c.199]    [c.86]   
Новые методы анализа аминокислот, пептидов и белков (1974) -- [ c.12 , c.16 , c.33 , c.73 , c.74 ]




ПОИСК





Смотрите так же термины и статьи:

Плазма



© 2025 chem21.info Реклама на сайте