Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Аппараты псевдоожиженным слоем насадки

    Перспективными представляются также абсорберы с подвижной насадкой (с псевдоожиженным слоем насадки), которые успешно используются в промышленности для очистки газовых потоков (рис. 17.14). Интенсивные гидродинамические режимы, создаваемые в этих аппаратах, способствуют не только повышению удельной производительности, но и скорости массообмена. Абсорберы с псевдоожиженной насадкой целесообразно применять при обработке загрязненных газовых потоков и жидкостей. [c.554]


    Аппараты с псевдоожиженным слоем насадки и барботажные тарельчатые аппараты допускают низкий удельный расход поглотителя, несколько более высок он для форсуночных полых аппаратов. [c.7]

    Барботажные аппараты имеют более высокое гидравлическое сопротивление по сравнению с насадочными. Например, скруббер с тарелками провального типа, предназначенный для улавливания бензольных углеводородов, имел сопротивление около 400 мм вод. ст. при скорости газа 1,7 м/с [4]. Гидравлическое сопротивление полых форсуночных аппаратов невелико и при скорости газа 0,9—1,2 м/с составляет 55—100 мм вод. ст. [5, 6]. Аппараты с псевдоожиженным слоем насадки характеризуются значительным сопротивлением (50— 70 мм вод. ст. на одну тарелку при скорости воздушного потока 3— 5 м/с) [7,8]. [c.9]

    Аппарат работает следующим образом (рис. 1.6). Суспензия через патрубок Пн реагент через патрубок 12 поступают в камеру смешения 5, где образуется псевдоожиженный слой насадки, обеспечиваемый восходящим потоком жидкости, в котором происходит интенсивное перемешивание суспензии с реагентом. Затем суспензия направляется в секции аппарата 5 для грубой очистки и далее в камеру тонкой очистки 9, где полностью осветляется жидкая фаза суспензии. В камере 5 отделяется основная масса твердой фазы суспензии в результате флотации тонкодисперсных частиц пузырьками газов, выделяющихся на электродах 8 и 10. Интенсификация сгущения суспензии достигается увеличением пути прохождения жидкости (установлено определенное число перегородок — 13). В камере 9 взвешенные частицы дисперсной фазы практически полностью отделяются от жидкости, так как создаются благоприятные гидродинамические условия для всплывания пузырьков вместе с частицами. Осветленная жидкость выводится через патрубок 6, а продукт удаляется через патрубок 2. Ис- пользуя ионообменную мембрану 7, расположенную между электродами в камере тонкой очистки, изменяют pH осветляемой жидкости до требуемых значений. [c.13]

    ПРОБЛЕМЫ СОЗДАНИЯ АБСОРБЦИОННЫХ И РЕКТИФИКАЦИОННЫХ АППАРАТОВ С ПСЕВДООЖИЖЕННЫМ СЛОЕМ НАСАДКИ [c.46]

    Как уже отмечалось ранее, в последние годы привлекают внимание абсорбционные аппараты с псевдоожиженным слоем насадки. При разработке этих аппаратов необходимо определить не толь- [c.253]

    Фтористый водород хорошо растворим в воде, поэтому для его поглощения могут применяться различные аппараты, такие как простые противоточные скрубберы, мокрые газоочистители, состоящие из каскада аппаратов с насадкой, скрубберы с плавающей насадкой или с псевдоожиженным слоем насадки и др. [c.162]


    В дальнейшем изложении автор пользуется принятой в иностранной литературе терминологией, различая газожидкостной и турбулентный псевдоожиженные слои. Под первым подразумеваются реакторные системы, оперирующие мелкими частицами тяжелее жидкости и обычно с прямотоком ожижающих агентов. Под вторыми — тепло-массообменные аппараты, использующие крупные элементы насадки, как правило, легче жидкости при противотоке ожижающих агентов. — Прим, ред, [c.657]

    Схема пылеуловителя с псевдоожиженной насадкой приведена на рис. 3.37. Внутри цилиндрического корпуса 4 между нижней опорной 5 и верхней ограничительной 2 решетками находится слой насадки 3 из полых или сплошных шаров. Решетка 5 с крупными отверстиями или прямоугольными щелями является одновременно и газораспределительной. В верхней части аппарата установлен каплеуловитеЛь 1. Высота неподвижного слоя насадки составляет 200—300 мм при расстоянии между решетками 1200— 1500 мм. Шары насадки изготовляют из полиэтилена, полистирола, резины, стекла и других материалов диаметр шаров не более 0,1 диаметра аппарата. Диаметр промышленных аппаратов этого типа достигает 6,5 м. [c.235]

    Для сравнения нами выбраны пленочные (с листовой насадкой), насадочные (с деревянной хордовой насадкой), барботажные (с провальными тарелками) и распыливающ ие (полые форсуночные) абсорберы, а также аппараты с псевдоожиженным слоем насадки с использованием в качестве абсорбента каменноугольного масла. Сопоставим основные показатели выбранных типов абсорберов. [c.6]

    При теоретическом анализе перепада давления в контактном аппарате с турбулентным трехфазным псевдоожиженным слоем рассматривали слой, состоящий из насадки, псевдоожиженной потоком газа, и газовых пузырей, барботирующих через слой жидкости, удерживаемой опорной решеткой. Были предложены уравнения для определения перепада давления на решетках (в отсутствие насадки) в зависимости от скоростей газа и жидкости. Рассчитанные по этим уравнениям значения перепада давления согласуются с опытными данными авторов [c.677]

    В таких аппаратах с неподвижным слоем, как скрубберы и рекуператоры, помимо естественного кускового материала засыпки (уголь, руда и т. п.) или брикетированного и формованного (таблетки, шарики) материала, используют различные малообъемные насадки с низким гидравлическим сопротивлением при развитой поверхности (кольца Рашига, седла Берля и т. п.). В технике псевдоожижения подобные насадки используются редко, хотя за 1975—1979 гг. накоплен некоторый опыт успешного использования взвешенных насадок, особенно обрезков пластмассовых и резиновых труб в мокрых скрубберах для очистки газов в фосфорной и других отраслях промышленности [238]. [c.203]

    Задержку жидкости определяли на экспериментальной установке (описанной в разделе II.А) методом импульсного ввода трасера. Опыты проводили при скоростях ниже точки захлебывания (контактный аппарат с турбулентным трехфазным псевдоожиженным слоем характеризуется очень высокими скоростями захлебывания ). Было установлено, что задержка жидкости не зависит от расхода газа, как и для слоя неподвижной насадки (это подтверждено данными ряда исследователей). [c.677]

    Существенные различия между скрубберами с орошаемой неподвижной насадкой и контактными аппаратами с турбулентным трехфазным псевдоожиженным слоем были отмечены Ченом и Дугласом Задержка жидкости в слое неподвижной насадки слагается из динамической и статической составляющих, причем последняя играет весьма ограниченную роль в процессах межфазного переноса. В то же время, в контактном аппарате с турбулентным трехфазным псевдоожиженным слоем статическая задержка жидкости практически отсутствует вследствие движения насадки и, таким образом, вся удерживаемая жидкость принимает участие в массообмене между фазами. Этим, в частности, можно объяснить тот факт, что при одинаковых условиях работы скорости тенло-массопереноса в контактном аппарате с турбулентным трехфазным псевдоожиженным слоем выше, чем в абсорберах с неподвижной насадкой .  [c.677]

    При использовании в качестве ожижающей среды жидкости наблюдается более однородная структура слоя, а газа — неоднородный псевдоожиженный слой, состоящий из непрерывной фазы и пузырей, при этом одна часть ожижающей среды проходит через пузыри, другая — фильтруется через непрерывную фазу слоя. В зависимости от особенностей реализации процесса может образовываться фонтанирующий слой (в конических аппаратах) сменно-циклический псевдоожиженный слой (подача среды в циклическом режиме или зонально со сменой во времени зон подачи по площади решетки) заторможенный — слой, высота которого ограничена верхней решеткой секционированный — псевдоожижение в насадке. Псевдоожиженный слой получают в гравитационном поле и поле центробежных и. и магнитных сил (для ферромагнитных частиц), а также вибрационным способом (виброкипящий слой), сочетанием перечисленных воздействий на сыпучий материал. При использовании одновременно двух ожи-жающих сред (жидкой и газообразной) псевдоожиженный слой называют трехфазным. [c.138]


    Гельперин Н. И., Гришко В. 3., Савченко В. И., Щ е д -ров В. М., Исследование работы абсорбционного аппарата с псевдоожиженным слоем орошаемой шаровой насадки. Хим. и нефт. машиностроение, № 1, 22 (1966). [c.587]

    Обычно торможение слоя возникает при помещений в него достаточно крупных, неподвижных по отношению к стенкам аппарата, элементов. В особых случаях для разрушения пузырей и снижения уноса на поверхности слоя создают слой плавающих крупных, но легких элементов (пластмассовых шариков и т. п.) или вводят мешалки (вибрирующие элементы, например, свободно подвешенные цепи) для дестабилизации слоя, сильно склонного к агломерации и образованию устойчивых сквозных кратеров [112, 154]. Особенно при псевдоожижении жидкостью и трехфазном псевдоожижении слой заполняют кольцами Рашига, обрезками труб, различной инертной насадкой [16, 238]. [c.246]

    Несколько иначе обстоит дело с затопленной насадкой. Если высота слоя в насадке и расположенного над ней свободного слоя соответственно равны // и Яз, а сопротивление фильтрации пропорционально то отношение критических скоростей псевдоожижения в аппарате с затопленной насадкой и со свободным кипящим слоем (отнесенные теперь к полному сечению аппарата) равно [c.247]

    Котов В. М., Вальдберг А. Ю. Охлаждение газов в аппарате с псевдоожиженным слоем орошаемой шаровой насадки.— Промышленная и санитарная очистка газов, 1982, № 1, с. 8—10. [c.306]

    Для цилиндроконических аппаратов рекомендуются полиэтиленовые элементы насадки диаметром до 40 мм с насыпной плотностью до 120 кг/м а высота засыпки в статическом состоянии - 650 мм. Угол раскрытия конической части аппарата должен быть не более 60°. Удельное орошение для цилиндроконических аппаратов принимают достаточно высоким - около 4...6 л/м при этом унос жидкости меньше, чем в аппаратах с псевдоожиженным слоем. Цилиндроконические скрубберы могут применяться для очистки газов при их расходе до 40000 м ч. [c.209]

    Достаточно обоснованных методов расчетов цилиндрических аппаратов с орошаемой подвижной насадкой, работающих в фонтанирующем режиме, нет. К сожалению, отсутствуют и общие зависимости для определения параметров (давления и скорости) начала фонтанирования, устойчивого режима и перехода в пневмотранспорт. Конструируют подобные аппараты, как правило, по аналогам, работающим в условиях, совпадающих с заданными на проектирование. Оценочно для полиэтиленовой насадки размером 30...40 мм и насьшной плотностью около 120 кг/м скорость газового потока под решеткой, соответствующая режиму устойчивого фонтанирования, может быть принята до 10...12 м/с, удельное орошение - до 6 л/м Оценочные значения коэффициентов очистки и сопротивление аппарата могут приниматься аналогично аппаратам с псевдоожиженным слоем. [c.230]

    В некоторых случаях в аппаратах с псевдоожиженным слоем размещают сетки (с достаточно крупными ячейками) или насадку и тому подобные элементы — возникает заторможенный псевдоожиженный слой. Движение частиц в таком слое существует, но в сравнении со свободным псевдоожиженным слоем оно затруднено, зато распределение потока ОЛ здесь более равномерно. [c.227]

    Весьма эффективны кристаллизаторы с трехфазным псевдоожиженным слоем. Один из таких аппаратов (а.с. № 683768) состоит из двух секций (рис. 4.19) секции охлаждения 1 и роста кристаллов 10. В секции охлаждения помещено несколько горизонтальных решеток 5, на которых находятся слои насадки 4 высотой 80—150 мм из легкого полимерного материала. В верхней части этой секции расположены оросительное устройство 3 и сепаратор 2 для отделения капель раствора от отработанного хладоагента. В кристаллорастителе имеется перегородка И, отделяющая зону циркуляции кристаллизующейся смеси от зоны осветления маточника во внутренней циркуляционной трубе 6 помещена пропеллерная мешалка 8. [c.143]

    Наконец, сопосгавим удельный объем рассмотренных типов аппаратов для улавливания бензольных углеводородов из коксового газа, который может быть охарактеризован объемом аппарата, приходящимся на 1 м с поступающего в аппарат коксового газа. Расчеты, произведенные на основании имеющихся данных [1, 3, 4, 6], показывают, что для скрубберной установки с деревянной хордовой насадкой этот показатель равен 117, для полого форсуночного скруббера 40,3, для скруббера с провальными тарелками 5, 8 и, наконец, для аппарата с плоскопараллельной насадкой в сочетании с распределительными провальными тарелками 4,8 м м газа в секунду. Насколько нам известно, исследования по улавливанию бензольных углеводородов из коксового газа в аппаратах с псевдоожиженным слоем насадки не проводились, однако можно предположить, что такие аппараты будут весьма интенсивными и их изучение применительно к процессам улавливания химических продуктов коксования представляет несомненный интерес [9]. [c.9]

    Благодаря указанным преимуществам в настоящее время происходит систематическое изучение работы аппаратов ПАВН и внедрение их в промышленность [14, 70, 132 и др.]. Аппараты ПАВН применяют в процессах абсорбции, десорбции, теплопередачи, ректификации и пылеулавливания. В различных литературных источниках пенные аппараты со взвешенной насадкой называют по-разному турбулентный кйнтактный абсорбер, скруббер с плавающей насадкой [102], аппараты с псевдоожиженным слоем орошаемой насадкк [71], с кипящим слоем [444], с подвижной орошаемой (шаровойу насадкой [26—28] и, наконец, с орошаемой взвешенной насадкой (ВН) [70, 264]. . [c.243]

    Схема такого аппарата с орошаемым жидкостью псевдоожиженным слоем насадки представлена на рис. Х1-76. Между опорной колосниковой или перфорированной решеткой 5 и верхней, огра-ничиваюшей высоту подъема шаров решеткой 3, помещается слой полых шариков 4. Ожижающим агентом является газ или пар. Распределяемая оросителем 2 жидкость попадает на поверхность шаров, непрерывное движение которых способствует турбулизации газового и жидкостного потоков и непрерывному обновлению поверхности контакта фаз. [c.483]

    Возрастает степень химического превращения. При изучении влияния сетчатой насадки на изомеризацию циклопропана (реакция первого порядка) установлено что в аппаратах диаметром до 150 мм нри наличии такой насадки превращения выше, чем в обычном псевдоожиженном слое, хотя и ниже, чем в неподвижном. Найдено также , что при восстановлении концентрата железной руды с участием сетчатой насадки повышается степень использования водорода. Слой с сетчатой насадкой приближается по своим свойствам к псевдоожиженному слою без газорых пузырей, и химическое превращение в нем должно быть выше поскольку меньше проскок газа с пузырями без контакта с твердыми частицами. [c.541]

    Автору, очевидно, остались неизвестными многочисленные работы по гидродинамике и массообменной способности аппаратов с турбулентным трехфазным псевдоожиженным слоем, опубликованные на протяжении последних 6—8 лет советскими и зар жными исследователями. Это, естественно, значительно сузило объем информации по рассматриваемому вопросу, изложенной в данной главе. С целью восполнения этого пробела мы приводим список наиболее важных опубликованных работ [8-22]. В последних содержится достаточно обширная информация по ряду аспектов рассматриваемого процесса режимы трехфазного псевдоожижения начало полного ожижения и его зависимость от скоростей потоков ожижающих агентов, их физических свойств, а также от размеров и эффективной плотности элементов насадки динамическая высота слоя и газосодержание перепад давления в слое пределы существования трехфазного псевдоожиженного слоя интенсивность циркуляции элементов насадки в слое величина межфазной поверхности продольное перемешивание массообменная способность аппаратов с трехфазным псевдоожиженным слоем в процессах физн- -ческой абсорбции, хемосорбции и ректификации бинарных Жидких смесей. [c.675]

    Тепло-массообмен исследовали в контактном аппарате с турбулентным трехфазным псевдоожиженным слоем квадратного поперечного сечения 305 X 305 мм, заполненным полыми поли-этиленовымп шариками в качестве ожижающих агентов использовали воздух и воду. Было замечено, что в процессе абсорбции аммиака из смеси с воздухом высота единицы переноса (ВЕП) уменьшается с повышением расхода жидкости, но увеличивается с возрастанием расхода газа. Кроме того, отмечали падение ВЕП при уменьшении статической высоты слоя. Сравнение данных по абсорбции аммиака в аппаратах с неподвижной насадкой и с турбулентным трехфазным псевдоожиженным слоем показало, что последние более эффективны. [c.678]

    Для уменьшения эффекта обратного перемешивания аппарат делят на ряд последовательных секций, соединенных перетоками или разделенных провальными решетками с крупными отверстиями, или помещают в аппарат крупную неподвижную насадку ( заторможенный или организованный псевдоожиженный слой) (рис. 11.37). Оба эти варианта были сопоставлены Богомаз [127] на описанной выше установке. В одном случае колонка была заполнена пинг-понговыми шарами с d = 3,5 см, промежутки [c.115]

    Для работы с загрязненными газами и жидкостями применяют аппараты с подвижной насадкой, сравнительно легкие элементы к-рой поддерживаются потоком газа во взвешенном (псевдоожиженном) состоянии. Положение слоя взвешенных элементов фиксируется ниж. (опорной) и верх, (ограничительной) решетками. В аппаратах с неск. слоями насадки верх, решетка нижерасположенного слоя служит опорой для вышеразмещенного. Высота слоя насадки в неподвижном состоянии (без газового потока) 0,2-0,3 м, расстояние между решетками 1-1,5 м. Для улучшения контакта между газом и жидкостью в аппаратах большого диаметра пространство между решетками разделяют вертик. перегородками на прямоугольные или секторные отсеки. С целью улучшения распределения жидкости и З еньшения брызгоуноса предложены конич. аппараты, в к-рых сечение возрастает по ходу газа. Аппараты с подвижной насадкой могут функционировать при больших скоростях газа без захлебывания и обеспечивают более высокий коэф. массопередачи, однако характеризуются большим гидравлич. сопротивлением, значит, брызгоуносом и износом насадочных тел. [c.173]

    Из-за аналогии процессе , протекающих в пенных аппаратах и аппаратах с псевдоожиженным слоем шаровой насадки, эффективность пылеулавливания в последних может быть определена по формуле (1.54) с помощью значений dso nlgo, , [c.105]

    Котов В. М., Вальдберг А. Ю., Тельперин Н. И. Аппараты с псевдоожиженным слоем орошаемой насадки и возможности их применения в процессах очистки газов и пылеулавливания М ЦНИИ-ТЭнефтехим, 1970 56 с. [c.307]

    Недостатки, присущие многосекционным аппаратам с провальными тарелками, а также с переточными устройствами, обусловили поиск более рациональной конструкции адсорбера. В последние годы разработаны адсорбционные аппараты со сменноциклическим перемещением адсорбента, в которых сочетаются достоинства псевдоожиженного слоя с противоточным движением взаимодействующих фаз в последовательно секционированной колонне. На рис. VI-25 показана схема такого адсорбера [33, 34]. Аппарат представляет собой колонну /, состоящую из отдельных секций с упорами 2. Колонна снабжена горизонтальньши беспровальньши перфорированными тарелками 3, каждая из которых может поворачиваться вокруг горизонтальной оси 4, проходящей через середину полки. Повороты осуществляются при помощи рычагов с противовесами 7 автоматическим приводом. Для подачи зернистого материала в аппарат сверху и вывода материала" из него предусмотрены питатели. Очищаемая жидкость вводится снизу через распределительный слой 6, состоящий из неподвижной инертной насадки. Проходя через слой зернистого материала на полках, жидкость псевдоожижает адсорбент и контактирует с кпм. Отвод очищенной жидкости осуществляется через сборный лоток в расширенной части колонны. [c.164]

    Газопромыватели с подвижной насадкой представляют собой емкости, в которых на опорно-распределительной решетке располагается слой насадочных элементов, имеющих возможность перемещаться при работе аппарата. Корпуса таких аппаратов выполняют цилиндрической (рис.5.11, а) или цилиндроконической (рис.5.11, б) формы. Цилиндрические аппараты рассчитываются на работу в режиме псевдоожижения, а цилиндроконические - в режиме фонтанирования. В отличие от газопромываетелей с неподвижной насадкой, эти аппараты могут использоваться для улавливания всех видов пыли, за исключением схватывающей и длинноволокнистой Аппараты с фонтанирующей насадкой могут работать в более широком диапазоне скоростей, чем аппараты с псевдоожижением. [c.208]

    Конструкции устройств для массообмена газов и жидкостей с твердыми телами типизировать сложно, поскольку они в значительной мере зависят от размеров, формы, физико-химических свойств самих твердьк тел, их концентрации в сплошной среде, а также принятого способа контакта (в неподвижном, движущемся или псевдоожиженном слое, в потоке сплошной среды и т.д.). При этом твердая фаза нередко выполняет роль насадки, но не инертной (как в насадочном аппарате), а активной, участвующей в массообмене. На рис. 10.3,с) в качестве примера приведены контактные устройства для прямотока фаз (например, пневмо- или гидротранспорта), противотока фаз (пример — движущийся слой), перекрестного тока (аэрожелоб, в котором псевдоожиженный твердый материал, пронизываемый газовым потоком, перемещается под уклон), аппараты периодического (4) и полунепрерьшного ( ) процессов (например, для экстрагирования ценного компонента из твердого материала). [c.748]

    Весьма эффективным и сравнительно простым является тарельчатый абсорбер с псевдоожиженной насадкой на тарелках (рис. 11.12). В качестве насадки, помещаемой на опорные решетки 1, используют тела различной формы (чаще всего — шаровые) с кажущейся плотностью рк, меньшей плотности жидкости р. Насадку (шары диаметром от 10 до 30 лш — полые или сплошные) изготавливают из полиэтилена, полипропилена и других полимеров, а также из металла или резины. При скоростях газа, ггревышающих некоторое критггческое значение, на тарелках образуется слой жидкости, а насадка переходит в псевдоожиженное состояние. С ростом скорости газа высота слоя насадки и, следовательно, порозность слоя увеличиваются. При интенсивном перемешивании насадки хоропго перемешивается и жидкость на тарелке. Это уменьшает поперечную неравномерность потока жидкости и увеличивает эффективность аппарата. [c.919]

    Размещение в слое пучков вертикальных труб также оказывает положительное влияние на однородность псевдоожижения. Так, при установке в слое пучка трубок Фильда [232] наблюдалось уменьшение размеров газовых пузырей (крупные пузыри разрушались). Псевдоожижение мелкозернистого материала в слое крупнокусковой насадки [33] характеризуется отсутствием крупных пузырей, так как их размер ограничен величиной зазора между элементами насадки. В слое отсутствуют поршни, нет интенсивных всплесков. Пульсации давления наблюдаются только при высоких скоростях газа, когда часть материала выносится в пространство над насадкой. Псевдоожиженный слой в аппарате с крупнокусковон (шаровой) насадкой изображен на рис. 1У-29. [c.132]


Смотреть страницы где упоминается термин Аппараты псевдоожиженным слоем насадки: [c.209]    [c.8]    [c.246]    [c.539]    [c.154]    [c.494]    [c.27]    [c.483]   
Основы техники псевдоожижения (1967) -- [ c.483 ]




ПОИСК





Смотрите так же термины и статьи:

Аппараты слоем

Насадка псевдоожиженная

Псевдоожижение насадки



© 2024 chem21.info Реклама на сайте