Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Нефть теплота сгорания

    В связи с удорожанием нефти и ограничением применения ТЭС в последние годы во многих странах мира наметилась тенденция к возрастающему использованию кислородсодержащих соединений в товарных высокооктановых автобензинах. Среди кислородных соединений достаточно широкое применение находят метиловый (МС), этиловый (ЭС) и грег-бутиловый спирты (ТБС), метил-грет бутиловый эфир (МТБЭ), обладающие (табл. 8.3) высокими октановыми числами, низкими температурами кипения, что позволяет повысить 04 головных фракций и тем самым улучшить коэффициент распределения ДС, а также достаточно высокой теплотой сгорания. Особенно быстрыми [c.209]


    Теплота сгорания (теплотворность, или калорийность) топлива измеряется тем количеством тепла, которое выделяется при полном сгорании 1 кг топлива. Теплота сгорания нефти и нефтепродуктов весьма велика по сравнению с теплотой сгорания других видов топлива. [c.26]

    Свойства нефти зависят от ее состава. Нефть вязкая, опалесцирующая на свету жидкость, имеющая цвет от Светло-желтого до темно-коричневого. Плотность большинства нефтей 0,83—0,97, температура застывания от -f 11 (нефть с высоким содержанием парафинов) до более низкой чем —20 °С (бес-парафинистая нефть), теплота сгорания 39778,5—43963,5 кдж/кг. [c.457]

    Теплоту сгорания нефти можно достаточно точно выразить уравнением [292] [c.201]

    Теплота сгорания веществ, состав которых непостоянен (нефть, каменный уголь, древесина и др.), может определяться по данным элементного состава, для чего можно использовать эм лирическую формулу Д. И. Менделеева. [c.122]

    ОПРЕДЕЛЕНИЕ ТЕПЛОТЫ СГОРАНИЯ НЕФТЕЙ И НЕФТЕПРОДУКТОВ 1. ТЕПЛОТА СГОРАНИЯ [c.351]

    Нефть Марка мазута Выход на нефть вес. % Р ВУ80 Содер- жание серы % Температура, °С Теплота сгорания низшая ккал1кг [c.19]

    Нефть стала одним из основных источников энергии вследствие ее высокой теплоты сгорания, которая значительно выше, чем у угля и тем более чем у древесины [5]. [c.5]

    Нефть нагревается от 170 до 330° С, доля отгона на выходе из печи е = = 0,55, плотность отгона = 0,82, плотность остатка = 0,87. Температура на перевале р = 700 С. Состав топливного газа и теоретический расход воздуха такие же, как в примере 6. 3. Рабочая теплота сгорания топлива < р = 11 700 ккал/кг. [c.113]

    Плотность. Плотность не характеризует непосредственно качества топлива, но в сопоставлении с другими качествами может дать полезную информацию о нем. Нанример, плотность нефте-топлива данной вязкости дает указания на природу и происхождение продукта. По ней можно судить и о возможности дымообразования. Знание плотности важно для расчета подач топлива. Топлива поставляются и измеряются в объемных единицах, так что желательна постоянная плотность с увеличением плотности топлива наблюдается некоторое снижение его теплоты сгорания. Поэтому для более тяжелых топлив теплотворная способность яа единицу объема будет больше, а на единицу веса меньше, чем для топлив меньшего удельного веса. [c.485]

    Углеводородные горючие, получаемые из нефти, являются наиболее дешевыми и обеспеченными широкой сырьевой базой. Характерной особенностью углеводородных горючих является высокая теплота сгорания, поэтому в камере сгорания возникают очень высокие температуры, что затрудняет подбор устойчивых конструкционных материалов. [c.121]


    Знание структуры молекул и того, как она влияет на свойства, например на теплоту сгорания, помогает химикам определить молекулы, которые лучше соответствуют конкретным сферам применения. Например, как только возросла популярность автомобильного транспорта, сразу резко подскочила потребность в бензине. Исследователи стали искать пути повышения выхода бензина из сырой нефти. При простой перегонке он равен 18%. Одним из способов повышения выхода бензина является целенаправленное изменение структуры углеводородов нефти. Этот процесс заслуживает более подробного рассмотрения. [c.208]

    В качестве жидкого топлива применяют мазуты прямой перегонки (основа котельного топлива), крекинг-остатки, гудроны, различные смолистые вещества — остатки от очистки масляных дистиллятов, ловушечные нефтепродукты и др. К числу газообразных топлив относятся естественные или природные газы, нефтяные (попутные) газы, промышленные сухие газы, получаемые в процессах нефтепереработки. Нефтяные остатки и углеводородные газы обладают высокой теплотой сгорания — порядка 1000— 11 500 ккал/кг (или ккал/м ) при нормальных условиях. Для атмосферной перегонки нефти с целью получения бензина, керосина и [c.200]

    Основными химическими элементами, входящими в состав нефти, являются углерод (82—87 вес. %), водород (11—15 вес. %), сера (0,1—7,0 вес. /о), азот (до 2,2 вес. %) и кислород (до 1,5 вес. %). В нефтяной золе найдены V, N1, Ге, Са, Ка, К, Си, С1, I, Р, 81, Аз и др. Среди полезных ископаемых (исключая нефтяной газ) нефть известна как горючее с наивысшей теплотой сгорания, так как в ней содержится наибольшее количество водорода. Из компонентов горючих ископаемых водород обладает самой высокой теплотой сгорания.  [c.21]

    Все процессы переработки нефти и газа связаны с нагреванием или охлаждением материальных потоков, т. е. подводом или отводом тепла. Ведение этих процессов, а также технологические расчеты, проектирование нефтезаводской аппаратуры требуют всестороннего-изучения тепловых свойств нефтей и нефтепродуктов. К тепловым свойствам относятся удельная теплоемкость, теплота парообразования, энтальпия, теплота плавления и сублимации, теплота сгорания, теплопроводность и др. Лабораторное определение тепловых свойств — дело весьма сложное. По этой причине в технических расчетах прибегают к обобщающим эмпирическим формулам или графикам, рассматриваемым ниже. [c.62]

    Свойства нефти зависят от ее состава. Нефть—вязкая, оиалесцирующая на свету жидкость, имеющая цвет от светло-желтого до темно-коричневого. Плотность большинства нефтей 0,83— 0,97 г/см , температура застывания от +10 (нефть с высоким содержанием парафинов) до —20°С (беспарафинистая нефть), теплота сгорания 39 800—44 ООО кДж/кг. [c.32]

    К 1965 г. до 34% и природного газа до 16—17% . Предполагается, что к 2000 г. доля угля в мировом топливна-энергетическом балансе понизится до 23,7% и нефти — до 26,3% вследствие расширения использования атомной энергии, доля которой составит 22,0%. Доля природного газа по-прежнему будет возрастать и к 2000 г. достигнет 23,0% (в пересчете на условное топливо, теплота сгорания которого принята в СССР 7000 ккал/кг). В топливно-энергетическом балансе СССР к 1965 г. доля угля составляла 44,0%, нефти 36,4% и природного газа 15,9%, к 1975 г. суммарная доля нефти и природного газа должна составить не менее 67%. Удельный вес угля в топливно-энергетическом балансе СССР будет продолжать снижаться .  [c.16]

    Существует общее мнение, что уже в конце нашего столетия важное место в энергоснабжении займут синтетические виды топлива. Одним из них будет заменитель природного газа, которому и посвящается настоящая книга. К другим видам синтетического топлива относятся газы с более низкой теплотой сгорания, которые можно получать описанными в данной работе методами, и целый ря 1 жидких продуктов. Они будут дополнять, а в конечном счете и заменять природный газ и обычную сырую нефть как топливо и как сырье. Основным сырьевым материалом для получения синтетического топлива будет уголь, начиная от лигнитов и кончая каменными углями, поскольку его запасы огромны. Значительная роль отводится и таким ресурсам, как нефтеносные сланцы, битуминозные песчаники и тяжелая нефть. [c.5]

    По натуральным показателям. Распределение пропорционально массе продукции, или содержанию полезного вещества, или массе переработанного сырья в химической промышленности применяется редко. Распределение пропорционально теплоте сгорания может быть применено только для продуктов энергетического использования, наиример при добыче нефти и газа. Однако энергетический критерий не всегда может быть применен даже для продуктов энергетического использовапия. Например, теплоты сгорания сланцевого бензина и сланцевого мазута почти равны, и [c.253]


    Шламы с теплотой сгорания ниже 7000 кДж/(кг содержащейся воды) обычно смешивают с высококалорийными органическими материалами, для того, чтобы увеличить указанный показатель до 8150 кДж/кг. Высококалорийные отходы содержат измельченную бумагу или древесину, неиспользуемые отходы нефти и отработанные фильтры процесса фильтрации органических материалов. Нормальный процесс сжигания применяют в тех случаях, когда развивающиеся в печи высокие температуры не вызывают проблем, связанных с расплавлением золы. Шлаки, образующиеся в этом процессе, имеют невысокое содержание углерода. [c.141]

    В табл. 2. 13 приведены пределы изменения низшей теплоты сгорания углеводородных фракций, выделенных из бакинских, грозненских, приволжских и дальневосточных нефтей. [c.101]

    Нефть Теплота сгорания (низшая), ккал/кг Высота некоптя 1 его пламени, мм Содержание ароматических углеводородов, % Содержание серы, % Кислотность, мг КОН на 100 мл Дистиллята Йодное число. г на 100 г дистиллята Фактические смолы. мг на 100 мл дистиллята [c.595]

    Значения и QБ —теплоты сгорания или теплотворные способности — определяются экспериментально здачительно проще, чем тепловые эффекты реакций, и поэтому чаще всего теплоту реакции находят косвенным путем, пользуясь законом Гесса, по теплотам сгО рания начальных ц конечных продуктов реакции. Для оч ень многих углеводородов теплоты сгорания с большой точностью были определены экспериментально, и значения их можно найти в справочниках, например, Справочнике ф изико-химических и технических величин , т. УП, 1931, стр. 362 (дополнение к Технической Энциклопедии ). Для фракций нефти теплоту сгорания находят или экспериментально, сжиганием навески фракции в специальном приборе — калориметрическо й бомбе,— помещенной в водяной калориметр, или, если не требуется большая точность — по эмпирическим формулам. Для нефтяных фра Кций наиболее надежна формула Крагое, приводимая ниже. При вычислении по ней теплоты сгорания требуется знать только удельный вес фракции. [c.85]

    Во-вторых, почти все углеводороды, включая сырую топливную нефть и уголь, независимо от относительной молекулярной массы, могут взаимодействовать с кислородом и паром (или с воздухом и паром) при 1100—1400°С с образованием опять-таки смеси водорода, окиси углерода и некоторого количества двуокиси углерода, разумеется, разбавленных азотом, если в качестве окислителя применялся воздух [2]. По технологии газификации с частичным окислением теплота сгорания образующихся газов составляет около 2810 ккал/м (11 720 кДж/м ), если в качестве окислителя применяется кислород, и 1110 ккал/м (4650 кДж/м ) в случае воздушного дутья. [c.218]

    При технологических расчетах аппаратов нефтеперерабатывающих заводов приходится учитывать такие тепловые свойства нефтей и нефтепродуктов, как теплоемкость, теплота испарения и конденсации, энтальпия (теплосодержание), теплота сгорания и др. [c.30]

Рис. 8. График для определения теплоты сгорания жидких углеводородных фракций нефти до жидкой воды (высшей теплоты сгорания), р — отношение плотностей нефтепродукта при 20 °С и воды при 4 °С числа на кривых — характеризующий фактор К=1,21бУ"7+273/р , где / — средняя температура кипения фракции. Рис. 8. График для <a href="/info/1822276">определения теплоты сгорания жидких</a> <a href="/info/317939">углеводородных фракций</a> нефти до <a href="/info/98098">жидкой воды</a> (высшей <a href="/info/3545">теплоты сгорания</a>), р — <a href="/info/328536">отношение плотностей</a> нефтепродукта при 20 °С и воды при 4 °С числа на кривых — <a href="/info/33975">характеризующий фактор</a> К=1,21бУ"7+273/р , где / — <a href="/info/1455147">средняя температура кипения</a> фракции.
    Определить поверхность радиантных труб двухкамерной печи с двухрядным экраном для нагрева 250 000 кг/ч нефти (di" =0,870) от 160 до 350 °С. Массовая доля отгона на выходе из печи е = 0,55. Плотность паров d o=0,807, жидкого остатка di" =0,967. Элементный состав топлива (в % масс.) 81,5 С и 18,5 Н. Принять при расчете коэффициент избытка воздуха а=1,2 потери тепла излучением 4% от теплоты сгорания топлива температуру газов, уходящих из печи, /ух = 350°С температуру на перевале / = = 850 °С температуру воздуха /в=20°С к. п. д. топки г1т=0,95 диаметр труб 152 мм полезную длину труб 17,5 м степень экранирования ф = 0,36 фактор формы /(=1,72. [c.108]

    Тепловые эффекты процессов деструктивной переработки нефти определяют экспериментально, подсчитывают по закону Гесса или на основе материалов обследования реакционных устройств промышленных установок. Последний метод наиболее точен. При расчете теплового эффекта процесса по закону Гесса даже небольшая неточность в значениях теплоты сгорания или выхода продуктов приводит к весьма большим погрешностям. Тем не менее закон Гесса широко применяют для подсчета тепловых эффектов процессов. Расчет ведут следующим образом. [c.204]

    Теплота сгорания теплотворная способность) — количество тепла (в Дж), вьсделяющееся при полном сгорании единицы массы (кг) топлива (нефти, нефтепродуктов) при нормальных условиях. Различают высшую (О и низшую (О ) теплоты сгорания. отличается от на величину теплоты полной конденсации водяных паров, образующихся из влаги топлива и при сгорании углеводородов. [c.85]

    Темпера- тура отбора, Выход (на нефть), % рГ Фракционный состав, v o. сст Температчрп. "С Теплота сгорания (низшая), кка.г/кг Содержа- ние аромати- ческих углеводо- родов, % Содержание серы, % Кислотность. мг КОН на 100 МА дистиллята [c.296]

    Химический состав реактивных топлив также зависит от природы исходной нефти. Наиболее желательными компонентами реактивных топлив являются парафино-нафтеновые углеводороды. Они химически стабильны, характеризуются высокой теплотой сгорания и малым нагарообразованием. Ароматические углеводороды (особенно бициклические) менее желательны, поскольку их массовая теплота сгорания почти на 10% ниже, чем парафиновых углеводородов, они дымят и при сгорании вызывают повышенное нагарообра- ювание. Кроме того, для ароматических углеводородов характерна высокая интенсивность излучения пламени, что вредно отражается на сроке службы стенок камеры сгорания. Содержание ароматиче-С1ШХ углеводородов в реактивных топливах должно быть не более 20-22 вес. %. [c.131]

    Теплота сгорания автомобильных бензинов различных марок и разного компонентного состава, вырабатываемьк из нефти, практически одинакова (различается на 1-2%, что находится в пределах точности измерения расхода топлива при стендовых испьгганиях двигателей) [32]. Поэтому теплота сгорания в настоящее время также не определяется при квалификационных испытаниях автомобильных бензинов. В перспективе при использовании кислородсодержащих компонентов или продуктов переработки угля и сланцев, значительно отличающихся по теплоте сгорания от современных товарных бензинов, может возникнуть необходимость включения [c.31]

    Элементарный состав горючей смеси зависит в основном от состава исходной нефти и глубины её переработки. Элементарный состав малосернистого мазута практически не отличается от состава нефти, из которой он получен. Для внсокосернистого мазута характерным является пониженное по сравнению с нефтью содержание водорода и углерода и как следствие этого-понияенная теплота сгорания. Ещё меньше водорода содержится в высоковязких коекинг-остатках. Содержание Е мазуте азотистых, сернистых и кислородных соединений выше, чем в нефти,из которой он получен. [c.107]

    Газы с наибольшей теплотой сгорания образуются при нагреве нефтяного сырья и в результате различных деструктивных технологических процессов. В зависимости от процесса пере- аботки углеводородного сырья состав этих газов изменяется. Так, газ установок прямой перегонки нефти содержит 7—10% )Онана и 13—30% бутана, газ установок термокрекинга богат метаном, этаном н этиленом, газ установок каталитического крекинга — бутаном, изобутиленом и пропиленом. Многие из перечисленных газов служат ценным сырьем для химической н )омышленностн. Для нефтезаводских газов, полученных из сернистого сырья, характерно значительное содержание сернистых соединений и, в частности, сероводорода. Присутствие его в нефтяном газе крайне нежелательно, так как он вызывает интенсивную коррозию и очень токсичен. Поэтому на многих заводах газы подвергают мокрой очистке растворами этанолами-нов, фенолятов, соды и др. [c.110]

    Асфальтены являются продуктами окисления нейтральных смол и при перегонке нефти практически полностью переходят в мазут. Асфальтены, выделенные из нефти, по внешнему вид> представляют собой твердые аморфные вешества тёмно-бурого шш чёрного цвета. По строению асфальтены близки к нефтяным смолам, но отличаются от них большей молекулярной массой (1500 - 3000), меньшим содержанием водорода и более низкой теплотой сгорания. Б мазуте асфа-  [c.107]

    При переработке чечено-ингушских нефтей могут быть получены реактивное топливо ТС-1 с высокой теплотой сгорания (10 320—10 350 ккал/кг), осветительный керосин с хорошими фотометрическими свойствами (высота некоптя-щего пламени 22 мм и выше) дизелыюе топливо летнее с низкой температурой застывания или компонент специального дизельного топлива дизельные топлива с высокими цетановыми числами (53—60 пунктов). Как бензиновые, так лигроино-керосиновые и дизельные фракции нефтей отличаются малым содержанием серы и низкой кислотностью. [c.191]

    Легкие керосиновые дистилляты характеризуются высокой температурой начала кристаллизации, высокой теплотой сгорания (10 335 —10 420 ккал/кг), малым содержанием серы (до 0,03%) и отсутствием меркаптановой серы. Осветительные керосины обладают хорошими фотометрическими свойств ]ми (высота некоптящего пламени 24—32 мм), содержат до 0,08% серы. Вследствие высокой температуры застыва1]ия дизельных фракций из нефтей можно получать в основном летнее дизельное топливо, которое характеризуется высокими цетановыми числами (52—65) и малым содержанием серы (до 0,135%). П рименяя деп а рафи ни-зацию карбамидом, можно расширить ассортимент дизельных топлив. [c.279]

    Из всех нефтей Западной Сибири можно получать реактивные топлива, отвечающие требованиям ГОСТ на топливо ТС-1, за исключением нефтн усть-балыкской (ачимовской пачки, ва-ланжин), которая не удовлетворяет требованиям ГОСТ по содержанию серы (0,39%). Топлива отличаются относительно высокой теплотой сгорания( 10 300 до 10 365 ккал/кг), малым еоде )жанием серы (от 0,02 до 0,12%) и отсутствием меркаптановой серы. [c.361]

    Топлива для воздупшо-реактивных двигателей (ВРД) представляют собой керосиновые фракции или смесь керосиновых и бензиновых фракций нефтей. Важнейшими характеристиками топлив для ВРД являются теплота сгорания я плотность, определяющие возможную дальность полета самолета при задан-аом объеме топливных баков. [c.90]

    Реактивное топливо из этой нефти не является кондиционным вследствие высокого содержания ароматических углеводородов и низкой теплоты сгорания. Керосирювые дистилляты имеют заниженную высоту некоптящего пламени по сравнению с требованиями технических норм, поэтому они не могут быть иапользованы как осветительные. [c.164]


Смотреть страницы где упоминается термин Нефть теплота сгорания: [c.238]    [c.231]    [c.201]    [c.272]    [c.109]    [c.20]    [c.14]    [c.568]   
Химия и технология нефти и газа Издание 3 (1985) -- [ c.52 ]




ПОИСК





Смотрите так же термины и статьи:

Теплота сгорания

Франчян. Расчет теплоты сгорания нефтей и нефтяных фраКцйй (низшей)



© 2024 chem21.info Реклама на сайте