Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Молибден в морской воде

    Стойкость против ПК ферритных сталей в морской воде становится удовлетворительной только при содержании хрома > 25 % и обязательно при легировании молибденом. При этом наблюдается существенное облагораживание пит и реп (табл. 1.30). [c.106]

    Легирование никеля медью несколько повышает его коррозионную стойкость. Сплавы никеля, содержащие 30% меди (например, монель -металл никель - основа, 27...29% меди, 2...3% железа, 1.2...1.8% марганца), обладают высокой коррозионной стойкостью в пресной и морской воде, растворах серной (до 20%), плавиковой и ортофосфорной кислот. Легирование никеля хромом заметно повышает стойкость в окислительных средах, однако увеличивается чувствительность к воздействию анионов хлора. Совместное легирование никеля хромом и молибденом повышает устойчивость сплавов в окислительных и восстановительных средах. [c.157]


    На нержавеющих сталях, помещенных в морскую воду, глубокий питтинг развивается в течение нескольких месяцев начинается питтинг обычно в щелях или в других местах с застойным электролитом (щелевая коррозия). Склонность к локальным видам коррозии больше у мартенситных и ферритных сталей, чем у аустенитных. У последних склонность тем ниже, чем выше в них содержание никеля. Аустенитные стали 18-8, содержащие молибден (марки 316, 316Ь, 317), еще более стойки в морской воде, однако через 1—2,5 года и эти сплавы подвергаются щелевой и питтинговой коррозии. [c.311]

    Увеличенное содержание хрома и никеля способствует повышению стойкости стали к точечной коррозии. Аналогичное действие оказывают молибден, кремний и рений, препятствующие зарождению и вызывающие репассивацию питтингов. Углерод, титан и ниобий снижают стойкость хромоникелевой стали к точечной коррозии, такое же действие оказывает марганец при одновременном снижении содержания хрома и никеля. В отличие от хрома никель и марганец способствуют аустенизации стали. Никель, как правило, повышает коррозионную стойкость и уменьшает вероятность коррозии под действием напряжения. Добавка никеля к хромистым сталям позволяет сохранять их аустенитную структуру. Типичный представитель никельсодержащих сталей — сталь 18/8 (18% Сг, 8% Ni), содержащая 0,02— 0,12% углерода. Скорость коррозии этой стали в морской воде равна 0,010—0,012 мм/год. [c.25]

    Вольфрам. Вольфрам, как и молибден, обладает хорошей стойкостью в морских средах (см. табл. 62). Сообщалось, что в синтетической морской воде скорости коррозии вольфрама составляют около 5, 8 и 18 мкм/год при температурах 30, 60 и 100 "С соответственно [114]. При 181-дневной экспозиции в морской воде было получено значение 8 мкм/год. Таким образом, стойкость вольфрама в морской воде близка к стойкости молибдена. [c.162]

    Легирование сплавов титана молибденом и никелем повышает их сопротивляемость щелевой коррозии в морской воде [4.4]. [c.203]

    Влияние различных примесей на кинетику выделения водорода на амальгамном электроде в большой степени зависит от экспозиции. Чем больше время опыта, тем меньшие концентрации примесей оказывают заметное действие на процесс. Следует иметь в виду, что ни об одном из элементов периодической системы нельзя заранее сказать, что он обязательно должен отсутствовать в реальном технологическом процессе. Например, тщательно проведенными исследованиями было показано, что в морской воде присутствует до 50 элементов [257], природные соли содержат редкие металлы [258]. Такие элементы, как ванадий, хром и молибден, содержатся во сех сталях. Ванадий был обнаружен также в графитовых анодах [259], где может находиться и германий, который распространен и в природных силикатных материалах. Надо также иметь в виду, что за время электролиза через ванну с ртутным катодом проходят очень большие количества рассола и воды, подаваемой для разложения амальгамы. [c.39]


    Для использования в условиях морской воды при обычных температурах наиболее подходящими материалами являются титан и хромоникелевые стали с молибденом. Высокая коррозионная стойкость хрома позволяет рекомендовать хромирование для защиты от щелевой коррозии. В тех случаях, когда титан при работе в горячих концентрированных растворах хлоридов подвергается щелевой коррозии, рекомендуется использовать сплавы Т1 — 0,2 % Рб, который отличается повышенной стойкостью к щелевой коррозии [2, Т1— (1—2)% N1 [57, с. 2613 и особенно Т1 —2% N — 1 % Мо [216.  [c.88]

    Устойчив молибден в большинстве солевых растворов, в том числе хлоридах и морской воде, а также в отношении атмосферной коррозии. Поскольку характер оксидов молибдена более кислый, чем оксидов хрома, стойкость молибдена в щелочах по сравнению с хромом еще ниже. Даже в разбавленных щелочных растворах молибден медленно корродирует, если присутствуют окислители (кислород, перекись водорода, нитраты, соли хлорноватой кислоты и т. п.). С повышением температуры и концентрации щелочи и окислителей скорость его коррозии заметно возрастает. При температурах выше 600°С в расплавах щелочей молибден растворяется и в отсутствие кислорода. [c.303]

    Нержавеющие стали в морской воде прн достаточно сильной аэрации обладают высокой стойкостью к общей коррозии, о.лнако склонны к сильной местной коррозии, особенно в застойных зонах, ограничивающих аэрацию. Различные марки нержавеющих сталей довольно сильно различаются по скорости развития местной коррозии. Наиболее устойчивы хромоникелевые стали аустенитного класса, допо.лнительно легированные молибденом, а наиболее подвержены местной коррозии простые хромистые стали. В спокойной морской воде нержавеющие стали, не легированные молибденом, не имеют преимуществ перед углеродистыми сталями по склонности к местной коррозии. Однако в быстродвижущей-ся морской воде местная коррозия углеродистой стали будет возрастать а коррозия нержавеющей стали — значительно снижаться. Так, максимальная скорость образования питтинга на стали марки 1X18Н9 в спокойной морской воде была около 1,85 мм/год, в то время как при скорости движения морской воды 1,2—1,5 м/с развитие местной коррозии снижалось до 0,09 -0,1 мм/год. [c.19]

    Основная область применения рения — жаропрочные сплавы. Хотя рений и уступает несколько по температуре плавления вольфраму, он имеет более высокую температуру рекристаллизации (1500° С против 1100° С у вольфрама) и превосходит вольфрам и прочие тугоплавкие металлы по своим механическим свойствам при высоких температурах [1]. Считается, что наиболее высокие механические качества при температуре порядка 2000—3000° С могут быть только у сплавов рения [2]. Из сплавов рения с молибденом, вольфрамом и другими металлами изготавливаются ответственные детали ракетной техники, а также сверхзвуковой авиации. Рений используется как легирующая присадка к жаропрочным сплавам на основе никеля, хрома, молибдена и титана. Другая область применения — антикоррозионные и износоустойчивые сплавы. Рений устойчив против действия расплавленных висмута и свинца при высокой температуре, что делает его перспективным материалом для атомных реакторов. Добавка рения к платиновым металлам увеличивает их износоустойчивость. Из таких сплавов делают, например, наконечники перьев автоматических ручек и фильтры для искусственного волокна. Из сплавов с добавкой рения изготовляют пружины и другие детали точных приборов. В силу химической стойкости рений применяется для покрытий, предохраняющих металлы от действия кислот, щелочей, морской воды, сернистых соединений. В электролампах и электровакуумных приборах рений может применяться для изготовления нитей накала, катодов и других деталей. Для этих же целей могут использоваться вольфрам и молибден, покрытые слоем рения. Рениевые и покрытые рением детали в несколько раз устойчивее обычных. Рений является ценным материалом для электрических контактов. Контакты из рения и его сплавов служат в несколько раз дольше, чем контакты из других материалов [3,4]. Представляет интерес применение рения для термоэлементов. Термопары с рением имеют в 3—4 раза большую электродвижущую [c.613]

    В средах хлоридов коррозионное растрескивание возникает в нейтральных растворах хлоридов при температуре выще 80 С. Повышение стойкости против язвенной и щелевой коррозии обеспечивается дополнительным легированием стали никелем и молибденом (сталь 08Х17Н13М2Т). Однако и в этом случае надежная работа деталей из этой стали в морской воде возможна при обеспечении катодной защиты протекторами из углеродистой стали. Повышение стойкости против коррозионного растрескивания обеспечивается дальнейшим увеличением содержания хрома и никеля до 40—50 % (стали типа Х32Н45 и др.). [c.70]


    Частпцы гидроксида вместе с адсорбированным молибденом (VI) выносятся на поверхность раствора, где они образуют хорощо заметный слой, который отделяют и анализируют. В работе [35] для определения молибдена применен роданидный спектрофотометрический метод. Из 500 мл морской воды можно выделить 95% содержащегося в ней молибдена в течение 5 мин. Схема флотационной установки приведена на рис. 18. [c.107]

    Описан метод определения молибдена в морской воде методом ЭПР [107]. Предварительно молибден выделяют в виде парамагнитного комплекса Mo(S N)s изоамиловым спиртом. Предел обнаружения молибдена равен 0,46 мкг/л. [c.116]

    Как и молибден(VI), вольфрам (VI) соосаждается на гидроксиде железа [27]. В интервале pH = 5 — 8 можно разделить вольфрам и рений. Метод применен для анализа морской воды [28]. [c.235]

    При экстракции растворителями тяжелее воды был использован экстрактор с 25 трубками. Объектом анализа была морская вода, к которой предварительно добавляли 100 мл насыщенной хлорной воды. Затем пробу насыщали хлороформом. Неподвижной фазой служил 1%-ный раствор 8-оксихинолина в хлороформе (по 20 мл в каждой трубке). После 400 переносов через экстрактор проходило 8 л воды. В первых 24 трубках концентрировались золото, олово, свинец, кадмий, железо, никель, кобальт, марганец, медь, палладий, цинк, индий, лантан и молибден. Органическую фазу упаривали и анализировали спектральным методом. При использовании в качестве неподвижной фазы 0,05%-ного раствора дитизона в четыреххлористом углероде в органической фазе концентрировались таллий, золото, медь, палладий и платина. [c.132]

    Металлический молибден был найден в некоторых метеоритах, а соединения молибдена обнаружены в морской воде, в наземных и морских растениях, в каменных углях, в нефтях и в животных организмах.  [c.280]

    При одновременном легировании никеля молибденом и хромом получается сплав, стойкий в окислительных средах, благодаря присутствию хрома, и в восстановительных благодаря молибдену. Один из подобных сплавов, содержащий также несколько процентов железа и вольфрама (хастеллой С) устойчив против питтинговой и щелевой коррозии в морской воде (испытания в течение Ю лет) и не тускнеет в морской атмосфере. Однако сплавы такого типа, хотя и обладают повышенной стойкостью к иону С1 , в соляной кислоте корродируют быстрее, чем бесхромистые никелево-молибденовые сплавы. [c.362]

    Сплавы на основе никеля, содержащие хром, железо, молибден и другие добавки, корродируют в зоне ила примерно так же, как и в неподвижной морской воде на больших глубинах (см. табл. 31). Например, сплав 80М —20Сг (нихром) подвергался щелевой коррозии как в иле, так и в воде над ним. Такие сплавы, как Инконель 625 и Хастеллой С, совсем не испытывали коррозии в зоне ила. На сплаве Инколой 825 наблюдалась случайная щелевая коррозия в придонных слоях воды и в иле [43]. [c.91]

    Наряду с другими в табл. 49 представлен супер-а-сплав Т1—8А1— 2КЬ—1Та. Вскоре после его создания выяснилось, что сплав металлургически неустойчив и обладает сильной склонностью к коррозионному растрескиванию под напряжением в морской воде. Уменьшение содержания на 1 % А1 в сплаве не влияло на склонность к растрескиванию. В последующем было установлено, что существенным фактором, определяющим степень склонности металла к коррозионному растрескиванию в морской воде, является наличие в его структуре компонента, вызывающего охрупчивание. Титаноалюминиевые сплавы проявляют склонность к растрескиванию, если в них присутствует Т1зА1. Наличие этого компонента характерно для сплавов, содержащих 4 % А1 и более. Важную роль могут играть наряду с алюминием и другие элементы. Присутствие кислорода в количестве свыше 0,8 % снижает допустимое содержание алюминия. Изоморфные Р-стабилизаторы, такие как молибден, ванадий и ниобий, повышают наибольшее допустимое содержание алюминия, однако при увеличении концентрации кислорода эффективность перечисленных добавок снижается. [c.126]

    Важными коррозионностойкими материалами являются также Ni, Al u, Ti и сплавы на их основе Никель устойчив к воздействию горячих и холодных щелочей, разбавленных неокисляющих орг и неорг к-т, а также воздушной атмосферы Легирование медью повышает его стойкость к коррозии в восстановит средах, а также к питтинговой коррозии в морской воде Легирование хромом повышает сопрот ивление воздействию окислит сред, а молибденом восстановительных, одновременное легирование хромом и молибденом воздействию тех и других сред Алюминий обладает хорошей стойкостью к коррозии в атм условиях, в р-рах уксусной и азотной к-т, парах S, SQ2 и др Легируют AI небольшими кол-вами др металлов, гл обр для улучшения его мех характеристик Медь устойчива к воздействию возд)ха, морской и пресной (горячей и холодной) воды, деаэрир р-ров неокисляющих к-т Сплавы Си с А1 (алюминиевая бронза) и Ni (купроникель) используют для изготов- [c.164]

    Элементы с консервативным поведением характеризуются вертикальными профилями (сходными с профилями главных ионов), которые отражают их практически постоянные концентрации по всей глубине. Такие элементы ведут себя как главные ионы — имеют длительные времена пребывания и хорошо перемешаны в морской воде. Они не являются главными компонентами морской воды только потому, что их содержание в земной коре очень низкое по сравнению с основными ионами. Элементы с рассматриваемым типом поведения образуют простые анионы или катионы (у них низкие отношения г/г и, следовательно, слабое взаимодействие с водой), например, или ион брома (Вг ), или образуют комплексные оксианионы, например, молибден (Мо) и вольфрам (Щ, существующие в воде в виде М0О4 и У04 соответственно (рис. 4.13). Консервативные элементы слабо взаимодействуют с биологическим круговоротом. [c.195]

    С, коррозионностойки (см. Коррозионная стойкость) в к-тах, щелочах, морской воде и жаростойки (см. Жаростойкость) при т-ре до 1200° С. Для улучшения прокалаваемости Б. ч. легируют никелем (3—5%) и молибденом (0,3— 1,5%), Б. ч. плохо поддается обработке резанием, поэтому отливки из него подвергают отжигу. Б. ч. применяют в горнорудной пром-сти — для изготовления плит щаровых мельниц, рабочих колес щламо- [c.126]

    Джойнер и Финлей [381] извлекали Ре и Мп из морской воды в МИБК, используя в качестве комплексообразователя диэтилдитиокарбамат. Экстракцию производили при естественном pH морской воды. При содержании марганца 0,5 мкг/л в пробе объемом 250 мл стандартное отклонение составляло - 0,05 мкг/л. Делафтер [227] одним комплексообразователем извлекал из рассолов Си, Ре, Мп и N1. Молибден экстрагировали в виде комплексного соединения с 4-метил-1,2-димеркаптобензолом. Хром образовывал комплекс с дифенилтиокарбазоном. Все элементы можно было обнаружить в образце весом 800 г при их содержании до 1 мкг/л. Способы экстракции отдельных элементов описаны подробно в соответствующих разделах главы IV. [c.208]

    Ванадий имеет заметно более низкую коррозионную стойкость в кислотах (Н2304, НС1), чем тантал, ниобий, молибден, но его стойкость все же заметно выше в кислых растворах, содержащих ионы хлора, чем у нержавеющих сталей 08Х18Н10Т. Ванадий весьма стоек в морской воде, растворах хлоридов и почти во всех органических кислотах. Он склонен к перепассивации и поэтому не стоек в окислительных средах (например, в азотной кислоте, хлорном железе). [c.300]

    Определению урана по приведенной прописи мешает молибден. Для определения U(VI) в присутствии Mo(VI) в качестве фона были опробованы растворы 2М H lO4-f0,06M Ма2Сг04, содержащие С1 в различных концентрациях. На этих фонах разности потенциалов пиков Си(П), U(VI) и РЬ(П) достаточно большие. Например, в 0,005 М растворе С1 п == = —0,21, —0,39 и —0,59 В (р. д.) соответственно. Mo(VI) дает на этих фонах два пика меньшей высоты с п=—0,18 В (р.д.) и большей высоты с Еп= =—0,44 В (р.д.). Седло между этими пиками расположено выше линии фона. Пик U(VI) находится на этом седле, но его высота может быть определена графически с достаточной точностью. При определении урана В морской воде методом импульсной полярографии получаются результаты, совпадающие с данными методов изотопного разбавления и флуори-метрии [233]. По воспроизводимости импульсная полярография превосходит флуориметрию (Sr = 0,014 и 0,050 соответственно) и уступает методу изотопного разбавления (Sr = 0,005). [c.191]

    Хромоникелевые аустенитные стали по сравнению с хромистыми обладают рядом преимуществ, например хорошей свариваемостью, меньшей склонностью к охрупчиванию при повышенных температурах. Однако и хромоникелевые стали склонны к межкристаллитной коррозии, что особенно опасно для сварных конструкций. Этот вид коррозии обнаруживается после нагрева и выдержки при 400—800° С. Сталь с 17—20% Сг и 8— 11% N1 обладает высокой стойкостью в окислительных средах. Легирование этой стали молибденом, медью, палладием повышает стойкость ее в серной кислоте. Сталь устойчива в растворах шелочей и в органических кислотах при невысокой температуре. Легирование титаном, ниобием, танталом — катоднообразующими элементами устраняет склонность стали к межкристаллитной коррозии. Это же достигается закалкой стали (при 1100—1200° С). В морской воде, почве и в слабокислых растворах при содержании в них ионов хлора у хромоникелевых сталей часто наблюдается точечная коррозия, распространяющаяся в глубину металла. Легирование молибденом препятствует развитию точечной коррозии, особенно в средах, содержа щих хлориды сталь становится более стойкой и в ряде других сред (органические кислоты, соляная и серная кислоты). Легирование одновременно медью (2%) и молибденом (2%) значительно повышает стойкость в серной кислоте при всех концентрациях и повышенных температурах, что особенно важно для химической промышленности. [c.53]

    Коррозионно-стойкие чугуны легируют хромом, никелем, медью, молибденом и кремнием. Эти чугуны стойки в щелочах, растворах соды, морской воде. Чугуны СЧЩ-1 и СЧЩ-2 применяют при изготовлении котлов для плавки каустика. Чугуны ЧНХТ, ЧН1ХМД, ЧН1МШ применяют в двигателестроении для отливки поршневых колец, направляющих втулок головок цилиндров, выпускных патрубков, поршней и гильз. [c.351]

    В аналогичных условиях сорбируется молибден. Молибден и вольфрам отделяются от щелочных, щелочноземельных элементов, Te(IV), Se(IV), As(III), Mn, Th, РЗЭ, Ni. Сильно сорбируются Ti(IV), Sb(III), Bi, u, Hg(II), платиновые металлы. Молибден и вольфрам элюируют раствором 0,5 М NaOH + 0,5 М Na l. Метод применяют для концентрирования вольфрама из морской воды. [c.74]

    Методы извлечения металлов из промышленных сточных вод значительно различаются в зависимости от природы металлического нона и его концентрации. Изучение состава сточных вод, образующихся в травильных и гальванических цехах, показало [76], что ионообменный процесс обеспечивает экономичное извлечение из них хрома, меди и цинка [139, 180, 615], позволяя одновременно предотвратить загрязнение водоемов. Применением ионного обмена может быть разрешена проблема очистки сточных вод в промышленности искусственного шелка, где основным металлом—загрязнителем является цинк или медь [22, 553]. Обширные исследования проведены по применению методов ионного обмена для очистки вод, загрязненных опасными радиоактивными отходами установок по производству атомной энергии [379]. Методы ионного обмена обеспечивают экономичное извлечение серебра из сточных вод отходов фотолабораторий и кинокопировальных фабрик [388, 389] и извлечение магния из морской воды [49, 386]. Показано [19, 527—530], что такие металлы, как хром, мышьяк, железо, молибден, палладий, платина и ванадий, могут быть извлечены из разбавленных растворов и сконцентрированы путем адсорбции соответствующих комплексных анионов (СгО , РЬС1 и т. д.) на анионообменных смолах. Описаны методы получения магния из морской воды при помощи ионного обмена [209,257,386]. [c.139]


Смотреть страницы где упоминается термин Молибден в морской воде: [c.145]    [c.162]    [c.122]    [c.45]    [c.63]    [c.12]    [c.741]    [c.181]    [c.141]    [c.107]    [c.351]    [c.173]    [c.122]    [c.70]   
Физические методы анализа следов элементов (1967) -- [ c.101 ]




ПОИСК





Смотрите так же термины и статьи:

Морская вода



© 2024 chem21.info Реклама на сайте