Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Колонка в высокоэффективной

    Наилучшим методом определения изопреноидных углеводородов является ГЖХ, проводимая в режиме линейного программирования температуры с применением высокоэффективных капиллярных колонок, или хромато-масс-спектрометрия. Хорошие результаты дает также предварительное концентрирование изопреноидных алканов путем клатратообразования с тиомочевипой. Изопреноидные алканы нефтей весьма различны по своей молекулярной массе и поэтому находятся в различных по температурам выкипания фракциях. Самый низкомолекулярный нефтяной изопреноид — [c.62]


    Исследованию полиароматических углеводородов в нефтях и рассеянном органическом веществе уделяется в настоящее время усиленное внимание, особенно в связи с проблемой охраны окружающей среды. Лучшим методом анализа этих углеводородов является ГЖХ с использованием высокоэффективных капиллярных колонок. Примеры таких анализов приведены в работах [47, 49—52]. [c.175]

    Независимо от намеченного плана решения конкретной поставленной задачи, подготовка пробы к анализу является начальным и одним из самых ответственных этапов любой аналитической методики. Как справедливо отмечается в книге [221, ...Весь процесс выделения и концентрирования полон опасностей, и можно без преувеличения сказать, что изменения, произошедшие на этих ранних этапах анализа, никогда нельзя исправить на более поздних его стадиях... Ни новейшее аналитическое оборудование, ни лучшие из разработанных способов ввода пробы, ни самые инертные высокоэффективные колонки или сложнейшее оборудование по обработке данных не могут дать корректную информацию, если проба подготовлена для анализа неправильно . В связи с этим приведем лишь один пример. Если в хроматографическую колонку ввести разбавленный спиртовый раствор смеси органических веществ, существенно различающихся по летучести, то пик растворителя (спирта) перекроет, замаскирует сигналы детектора на многие летучие соединения, подлежащие определению, а нелетучие компоненты пробы, оставаясь длительное время в колонке, могут послужить причиной ложных результатов при о работке последующих хроматограмм. Поэтому при исследовании такого рода объектов необходимо предварительно удалить все нелетучие вещества и основную часть растворителя, причем проделать это так, чтобы относительные концентрации других летучих соединений не изменились. [c.157]

    Параметры колонки Высокоэффективная жидкостная хроматография Оптимизация коэффициента разделения Оптимизация скорости Оптимизация величины анализируемой пробы [c.50]

    Высокая скорость потока через колонку Высокоэффективная колонка [c.92]

    Относительно простой состав метилзамещенных алканов в нефтях группы позволил провести качественное и количественное определения углеводородов этого типа и в более высококинящих фракциях. В работе [13] сообщалось об определении этих углеводородов методом ГЖХ с использованием высокоэффективных капиллярных колонок. Метилзамещенные алканы большой молекулярной массы определялись методом молекулярной масс-спектрометрии [14]. Ти- [c.49]


    В практике анализа нефтяных газов содержание отдельных насыщенных углеводородов определяют низкотемпературной ректификацией газовых смесей. Из полученных ректификацией узких фракций Сг, Сд, С4 химическим путем (например поглощением бромом) удаляют непредельные углеводороды и по остатку определяют содержание парафинового компонента. Иногда непредельные углеводороды удаляют из газовой смеси до ректификации, как, например, при анализе бутан-бутиленовых смесей на изобутен (так как в присутствии бутиленов для разделения изомеров бутана требуется применять высокоэффективные колонки). [c.837]

    В. Подбельняк (США) в 1931 г. разработал лабораторную высокоэффективную ректификационную колонку, работавшую при низких температурах. Эта колонка позволяла весьма четко разделять смеси газообразных и легких жидких углеводородов до С5 и Се. Применение этих низкотемпературных методов разделения позволило установить состав газов из многих нефтяных и газовых месторождений, а также некоторых конденсатов и газов нефтепереработки. [c.223]

    Хорошее совпадение наших экспериментальных данных с данными Шейнкера и Перелепи, полученными методом определения равновесных концентраций, подтверждает возможность применения высокоэффективной лабораторной колонки для определения состава бинарных азеотропов при пониженных давлениях. [c.98]

    Размер пробы, вводимой в колонку, зависит от количества содержащейся в носителе жидкой фазы. Для высокоэффективной ко- [c.217]

    В газожидкостных системах основным фактором, определяющим удерживание компонента в колонке, является энтальпия растворения, а н газоадсорбционных системах — энтальпия адсорбции. Фазовое равновесие в данных системах описывается изотермой сорбции (адсорбции или растворения). Для приготовления высокоэффективных колонок выбор хроматографической системы [c.225]

    Использование произведений высот пиков на время удерживания, строго говоря, допускается лишь для случаев, когда ширина пика изменяется пропорционально времени удерживания, что, как правило, имеет место при хроматографировании близких по химической природе веществ на высокоэффективных колонках. [c.212]

    При отсутствии высокоэффективной насадки, имеющей ВЭТТ около 2 см, часто трудно достичь на колонке обычных размеров требуемого числа теоретических тарелок. В лабораторном помещении высотой 3,5 м можно разместить колонку, имеющую высоту ректифицирующей части не более 2,5 м. В этом случае наилучшие результаты можно получить, если установить две колонки, работающие последовательно так, как это показано на рис. 143. Дистиллат первой колонки непрерывно поступает на питание второй колонки [26]. Ввод питания расположен несколько выше куба второй колонки, размеры которого могут быть меньше, чем куба первой колонки. [c.233]

    ВИЯ анализа, т. е. температуру, скорость потока газа, а часто и давление на концах колонки. Вторая постановка задачи несравненно сложней. Она заключается в осмысленном выборе параметров высокоэффективной хроматографической колонки, необходимой для решения данной аналитической проблемы. Речь здесь идет о согласовании длины хроматографической колонки и приемлемого времени анализа, определении толщины пленки, величины [c.33]

    Прогресс в газовой хроматографии был достигнут с помощью высокоэффективных хроматографических колонок. Очень трудные задачи разделения компонентов, весьма сходных по свойствам, возможны лишь на высокоэффективных хроматографических колонках. Однако для многих целей использование хроматографических колонок с максимальной разделительной способностью либо не является необходимым, либо нецелесообразно, так как процесс приготовления такой колонки оказывается слишком трудоемким, а продолжительность анализа слишком велика. Если принять во внимание это обстоятельство, то прежде всего следует иметь в виду цели применения хроматографической колонки. [c.67]

    Высокоэффективные хроматографические колонки [c.68]

    Приготовление заполненных высокоэффективных хроматографических колонок описано в фундаментальной работе Чешира и Скотта (1957). Эти исследователи получили колонки с эффективностью в 30 ООО теоретических тарелок и разделили м- и ге-ксилолы на сквалане. После открытия капиллярных колонок достижение такого рода экстремальных значений эффективности разделения не представляло особого интереса. Однако практика ставила бесчисленные задачи, которые целесообразно было решать на заполненных колонках, причем часто имела значение разделительная способность колонки. Необходимо придерживаться некоторых правил при изготовлении и производстве высокоэффективных хроматографических колонок. [c.68]

    Аналитическая практика ставила перед газовой хроматографией все более сложные проблемы разделения, решение которых требовало применения высокоэффективных хроматографических колонок. Чешир и Скот (1958), используя известные к тому времени теоретические закономерности, подобрали сорбент, размеры хроматографических колонок и рабочие условия таким образом, что была достигнута высокая разделительная способность, соответствующая 30 ООО теоретических тарелок. На этих колонках впервые было тогда проведено газохроматографическое разделение и- и м-ксилолов. Одновременно эти опыты выявили возможные границы дальнейшего повышения эффективности. [c.311]


    Для получения высокоэффективных адсорбционных колонок Халас и Гейне (1962) изготовили капиллярные колонки, внутреннее сечение которых было заполнено адсорбентом. [c.334]

    Как показывают примеры, приведенные на рис. 44, экспресс-анализ на капиллярах характеризуется значениями критерия разделения, отнесенного к времени (91), равными 7—13, что соответствует по порядку величины высокоэффективным капиллярным колонкам. [c.349]

    Кроме высокоэффективных и экстремально быстрых анализов с помощью капиллярных колонок можно проводить анализ широких фракций. Варьирование рабочих условий при работе на капиллярных колонках очень скоро показало, насколько уменьшается эффективность разделения при увеличении области температур кипения разделяемых компонентов. Примером этого может служить анализ семи к-алканов (рис. 31) при хорошем разделении изомеров. При еще более широкой области температур кипения, охватывающей примерно 12—15 членов гомологического ряда, разделение, конечно, значительно ухудшается. В то время как на заполненных колонках могут быть разделены все члены гомологического ряда, содержащиеся в таких пробах, капиллярная газовая хроматография при значении критерия разделения для гомологов К = 2—6 обладает такой разделительной способностью, что может отделять, кроме того, отдельные изомеры. [c.349]

    Жидкостная хроматография. Элюат, выходящий из колонки высокоэффективного жидкостного хроматографа, представляет собой раствор разделяемых веществ в эяю енте. Такой раствор невозможно ввести в ионный источник без резкого повышения давления. Разработано несколько методов удаления элюента, из которых, возможно, наиболее Э(М>ективным является термораспыление. При термораспылении элюат одновременно нагревается и распыляется в вакууме при этом растворитель испаряется и откачивается вакуумным насосом, а менее летучие вещества поступают в ионный источник в виде мельчайших распыленных частиц. [c.177]

    Эти годы ознаменовались все возрастающим значением исследований по нефтехимии и химии нефти. Внедрение новых методов исследования, особенно газовой хроматографии с использованием высокоэффективных капиллярных колонок, микрореактор-ной техники, стереоспецифического синтеза цикланов путем мети-ленирования, проведение равновесной конфигурационной и структурной изомеризации — все это позволило подойти к решению весьма сложных проблем химии углеводородов, совершенно невыполнимых еще 10 — 15 лет назад. Разработка новых методов анализа, успехи в области синтеза индивидуальных углеводородов весьма сложного строения немедленно нашли свое отражение и в исследованиях, посвященных изучению нефтяных углеводородов. Именно в эти годы в трудах отечественных и зарубежных ученых была показана вся сложность и своеобразность строения нефтяных углеводородов. Была также найдена связь между строением нефтяных углеводородов и строением важнейших природных соединений (изопреноиды, тритерпаны, стераны и т. д.). [c.3]

    Очевидно также, что чем симметричнее структура исходного углеводорода, тем меньше количество (число) образующихся изомеров. Своеобразный характер метиленирования открывает широкие возможности использования этой реакции для получения углеводородных смесей, содержащих весьма труднодоступные для обычного синтеза структуры. Особого успеха в расшифровке смесей, полученных метиленированием, можно ожидать только при использовании газовой хроматографии и высокоэффективных капиллярных колонок. Дело в том, что для получения смеси, состоящей только из ближайших гомологов, а реакция проводится так, что в каждой молекуле замещается только один водородный атом, глубина метиленирования обычно не превышает 2—3%. Однако использование капиллярных колонок и чувствительного пламенно-ионизационного детектора позволяет легко анализировать подобные смеси. Удачное применение метода метиленирования для анализа смесей изомерных нонанов показано в работе [119]. [c.291]

    Однако несдютря на попытку стандартизации методики определения относительных времен удерживания (учет времени удерживания несорбирующегося компонента — метана, использование в качестве реперов доступных углеводородов, близких по строению и телшературам кипения к анализируемым углеводородам, и пр.), автор заранее предупреждает об опасности использования отдельно взятых величин в целях качественной идентификации углеводородов на хроматограммах. Дело в том, что точность воспроизведения значений относительных времен удерживания несколько ниже точности разделения углеводородов, которая достигается в современных высокоэффективных капиллярных колонках. Поэтому, как уже указывалось, единственно надежным методом (причем необходимым, но, к сожалению, далеко не всегда достаточным) качественной идентификации пиков на хроматограммах является использование добавок индивидуальных углеводородов. [c.338]

    Современная высокоэффективная жидкостная хроматография. ВЭЖХ (жидкостная хроматография высокого давления, скоростная жидкостная хроматография) начала развиваться в начале 70-х годов. Разработка нового метода обусловливалась, во-первых, необходимостью анализа высококипящих (>400 °С) или неустойчивых соединений, которые не разделяются методом газовой хроматографии, во-вторых, необходимостью увеличить скорость разделения и повысить эффективность метода колоночной жидкостной хроматографии. Для этого применили колонки с малым внутренним диаметром (2—6 мм) для ускорения массообмена уменьшили диаметр частпц сорбента (5— 50 мкм), что, в свою очередь, привело к необходимости увеличить давление на входе колонки до 0,5—40 МПа. Выпускаемые промышленностью жидкостные хроматографы снабжены высокочувствительными детекторами, позволяюш,ими определять до 10 —10" ° г вещества. Достаточно высокая скорость анализа, низкий предел обнаружения, высокая эффективность колонки, возможность определять любые вещества (кроме газов) привели к быстрому развитию ВЭЖХ. [c.203]

    Чем эффективнее колонка, тем более тщательной регулировки режима она требует и тем, следовательно, сложнее и дольше на пей проводится перегонка. Поэтому не всякое нефтяное сырье следует перегонять на высокоэффективной колонке. Высокие колонки с большим числом теоретических тарелок применяют при определении химического состава бензиновых фракций, выделении узких фракций или индивидуальных компонентов (разделении продуктов синтеза). При перегонке многокомпонентных смесей, например широких фракций нефтей, тип и оптимальную высоту колонки выбирают в зависимости от назначения перегонки если разгонку нефти или нефтепродукта проводят с целью получения кривых ИТК (истинных температур кипения), то высота колонки может быть меньше, чем для получения из той же смеси отдельных, более четко отректифицироваиных фракций. Для получения кривых разгонок нефтей широко применяют стандартизированные аппараты типа АРН-2, описанные в главе 3. [c.42]

    Универсальный газовый Цвет-6-69 . Разработан и выпускается Дзержинским филиалом ОКБА. Позволяет проводить качественный и количественный анализ органических и неорганических веществ определять их микропримеси анализировать смеси веществ, кипящих в широком диапазоне температур, в режиме программирования температуры колонки анализировать трудноразделяемые смеси на высокоэффективных колонках, агрессивные и неустойчивые соединения на стеклянных колонках, высокомолекулярные вещества, непереводимые в газовую фазу простым испарением (применяя пиролитическую приставку) выделять небольшие количества отдельных веществ (используя препаративную приставку). Пригоден для физико-химических измерений. Снабжен пятью детекторами дифференциальным пламенно-ионизационным с порогом чувствительности 1 10 % пламенно-ионизационным термоионным с порогом чувствительности Ы0 % электронного захвата с порогом чувствительности 1-10 % четырехплечевым катарометром с порогом чувствительности Ы0 % плотномером с порогом чувствительности 1 -10 %. Тип газовой схемы—двухколоночная с независимой установкой расходов газа-носителя.- Тип программатора температуры колонок — линейный с установкой скорости через 1 град мин. [c.255]

    Четкая ректификация нефтяных фракций. За последнее десятилетие в связи с широким развитием органического синтеза на базе индивидуальных углеводородов нефтеперерабатывающие заводы все больше и больше оснащаются ректификационными колонками г большим числом тарелок, способными разделить жидкости, температуры кипении которых разнятся на 2 10° С. В связи с этим и в лабораториях стали строить ректификационные колонны на 50—70 и даже 100 теоретических тарелок. Высокая иогонораз-делительная способность этих аппаратов достигается, с одной стороны, подбором высокоэффективной насадки, с другой — уволи-чеш1ем высоты колонок, достигающей 2—3. и. [c.132]

    Замечательной особенностью капиллярных колонок является весьма высокая эффективность (до нескольких тысяч тарелок на метр длины), однако приготовление высокоэффективных и воспроизводимых по разделяьощей способности капиллярных колонок, особенно с полярными неподвижными фазами, все еще встречает трудности и требует определенных практических навыков. [c.33]

    Понятно, что надежность положительных заключений возрастает с повышением эффективности использованных колонок (как и с увеличением числа дополнительных нехроматографических сведений об исследуемом объекте). Тем не менее не все встречающиеся в практике задачи требуют использования высокоэффективных колонок и полного разделения всех компонентов смеси. Так, для получения информации о качестве, сортности или происхождении какой-либо сложной промышленной композиции, например различных типов бензинов, моторных топлив, пищевых продуктов или лекарственных средств (в том числе наркотического действия), достаточно выявить присутствие (а иногда и относительное количество) в анализируемой пробе лишь нескольких, так называемых ключевых компонентов [c.178]

    Разработка роторных колонок была вызвана необходимостью повысить разделяющую способность без увелпчения задержки и гидравлического сопротивления проходу паров. Подобные высокоэффективные колонки особенно необходимы для микро-ректификационных работ с загрузкой 1—5 г. [c.391]

    Хроматографическое разделение в открытой колонке занимает много времени. Это является основным недостатком классической колоночной хроматографии. Высокоэффективная жидкостная хроматография лишена этого недостатка. В этом высокопроизводительном методе наиболее широко применяют поверхностно-пористые ионообменники, обладающие рядом преимуществ по сравнению с обычными ионитами 1) они хорошо выдерживают давление 2) мас-сопередача в тонком поверхностном слое ионита осуществляется быстро, что обеспечивает установление равновесия за очень короткое время. [c.606]

    Решение задачи по разделению зависит не только от выбора рабочих условий хроматографическо колонки, но и от ее характеристик. Методы заполнения высокоэффективной хроматографической колонки будут изложены в следующих главах. Рассмотрим влияние длины колонки па разделение. [c.61]

    В 1957 г. Мартин на I симпозиуме по газовой хроматографии в Лондоне высказал мысль о том, что в будущем хроматографические измерения можно будет успешно проводить для микрограммовых образцов на высокоэффективных колонках диаметром 0,2 мм. Осуществление этой идеи уже в 1958 г. является примером быстрого развития газовой хроматографии. На II Международном симпозиуме в Амстердаме Голей (1958) дал математическое описание процесса разделения в капиллярной трубке, смоченной жидкостью. В то же время предложение использовать капиллярные колонки поддержали Дийкстра и де Гоей (1958). Теоретически предсказанная высокая эффективность разделения была подтверждена в работах Дести (1959), Дести и сотр. (1959) на медных капиллярах и Скоттом (1959) на капиллярах из найлона. Впоследствии над проблемами капиллярной газовой хроматографии работали во многих институтах. Уже первые публикации показали, [c.311]

    Величина определяется в первую очередь толщиной пленки и вязкостью жидкой фазы. Средняя толщина пленки практически лежит в интервале 0,5—2,5 мк. К экстремальному значению толщины пленки стремятся лишь в специальных высокоэффективных колонках (ср. df = 0,2 мк на рис. 31) по Эттру (1965), следует избегать толщины пленки свыше 2,5 мк, так как такая толстая пленка имеет недостаточную стабильность. [c.348]


Смотреть страницы где упоминается термин Колонка в высокоэффективной: [c.507]    [c.103]    [c.59]    [c.188]    [c.263]    [c.270]    [c.84]    [c.68]    [c.11]    [c.355]    [c.24]    [c.46]    [c.353]    [c.358]   
Аналитическая химия Том 2 (2004) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Высокоэффективная жидкостная хроматография заполнение колонки

Заполненная колонка, Капиллярная высокоэффективная

Изготовление и использование мини-колонок для высокоэффективной аффинной хроматографии

Колонка в высокоэффективной жидкостной хроматографии

Колонка в высокоэффективной заполнение

Колонка в высокоэффективной плавающие суспензии

Колонка в высокоэффективной предколонка

Колонки для высокоэффективной хроматографии

Колонки хроматографические высокоэффективные

Конструирование колонок для высокоэффективной хроматографи

Некоторые конструктивные соображения по поводу газо-хроматографических приборов, в которых используются высокоэффективные колонки Голея Кондон (пер. М. И. Яновский, ред. Н. М. Туркельтауб)

Перегонка на высокоэффективной лабораторной колонке



© 2025 chem21.info Реклама на сайте