Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Сдвиг меры

    Прирост напряжений при увеличении деформации характеризует деформационное упрочнение металла, т.е. с1а/(18= Е (тангенс угла наклона касательной к кривой растяжения). В пределах упругой деформации (1а/ё8 = Е (где Е - модуль Юнга). В области площадки Е = 0. По мере роста г модуль упрочнения изменяется по сложной (чаще по монотонно возрастающей) кривой, характер которой зависит от исходной структуры металла, формы и размеров образца, температуры испытаний, скорости деформации, схемы напряженного состояния и др. При соблюдении условия простого нагружения кривая упрочнения, построенная с использованием инвариантных величин а,- и (а,- и - интенсивность напряжений и деформаций) имеет один и тот же вид независимо от формы и размеров образцов, схемы напряженного состояния (одноосное или двухосное). Известно, что макропластическая деформация возникает в результате накопления пластических сдвигов, являющихся следствием инициирования, перемещения и [c.37]


    Плоскость СО удерживается неподвижно, а на поверхности плоскости АВ равномерно расположены параллельные между собой силы в направлении, указанном стрелкой, причем на единицу площади приходится сила, равная р. Под влиянием этой силы произойдет сдвиг плоскости АВ и всех промежуточных плоскостей между АВ и СО, вследствие чего линия ЕС перейдет в положение Е С и образуется угол ш, называемый углом сдвига. Мерой деформации твердого тела является [c.369]

    На рис. 4-10 приведена зависимость между касательными напряжениями Р и углом сдвига (мера деформации е) для различных влагосодержаний песка при постоянной температуре 18° С. Появление трещин отмечено вертикальной чертой. Из рис. 4-10 видно, что образование трещин, а также полное разрушение структуры происходят в упруго-пластической области. При влагосодержании 0,11—0,12 кг кг имеет место упругая область, с увеличением влагосодержания область упругих деформаций уменьшается и при больших влагосодержаниях все деформации практически являются упруго-пластическими. Пластическая область (течение с постоянной скоростью) для песка отсутствует. [c.198]

    Меру будем называть сдвигом меры р, на вектор у б Ф. Из (2.40) следует для характеристической функции Ха [c.125]

    Для каждого х Я т, введем меру на Са (Ф ), полученную в результате сдвига меры на вектор е х Я т,  [c.513]

    Вообще по мере того, как число сопряженных двойных связей увеличивается, электронные переходы требуют меньшей энергии. Это означает, что поглощение сдвигается в сторону низших энергий или в красную часть спектра. В сложных молекулах, содержащих длинные сопряженные системы, поглощение может настолько сдвигаться в сторону более длинных волн, что оно наблюдается в видимой области и вещество бывает окрашено. Это иллюстрируется данными по ряду молекул, представляющих собой линейно конденсированные ароматические системы, приведенные в табл. 1. [c.278]

    Аномалия вязкости, как уже указывалось, проявляется в том,, что под действием напряжений и деформаций сдвига вязкость уменьшается. Чтобы оценить, насколько интенсивно уменьшается вязкость в различных нефтях, удобно пользоваться приведенной вязкостью т]г = т)/т1о. Для всех нефтей в ньютоновской области течения Т1 = Т10 и Т1г=1. При этом отношение 11/110 тем меньше, чем больше аномалия вязкости. Следовательно, Т1г является показателем аномалии вязкости, т. е. мерой разрушения сетки при сдвиге. [c.124]


    ГОСТ 7163—54, автор А. А. Константинов). Схема вискозиметра приведена на рис. 113. Смазка выталкивается штоком 4 из камеры 5 через капилляр 6. Продавливание смазки через капилляр осуществляется при помощи предварительно сжатой пружины 1. При полностью сжатой пружине истечение происходит под большим давлением с высокой скоростью, по мере передвижения штока давление в камере и скорость сдвига смазки в капилляре падают. Таким образом достигается переменная скорость истечения (градиент скорости сдвига). [c.195]

    Резкие скачки тем-когда Т(, поддерживается постоянным, а V уменьшается. Нри V = максимальная температура не превышает температуры в точке М, и по мере уменьшения V до значения, соответствующего кривой АН , верхняя оценка температуры лишь медленно сдвигается до точки Н. Однако при небольшом последующем уменьшении V верхний предел температуры резко повышается до точки Ь, лежащей справа от точки /. Таким образом, постепенное загрязнение охлаждающей поверхности, вызывающее подобное уменьшение V, может в определенный момент привести к резкому повышению температуры в горячей точке . [c.275]

    Процесс окисления масла достаточно сложен. Кроме кислорода и температуры на него оказывают влияние скорость сдвига, интенсивность перемешивания, примеси, ионы металлов (особенно меди и, в меньшей мере, железа и др,). [c.31]

    Дальнейшие исследования позволили выявить оптимальные значения объемной скорости подачи сырья и температуры. Оптимальная температура для катализатора 1 составляет 330"С. При ней достигается максимальная глубина деароматизации (рис. 2.4). Существование максимума обусловлено сдвигом термодинамического равновесия реакции в сторону образования нафтеновых углеводородов при уменьшении температуры. Влияние объемной скорости подачи сырья на глубину деароматизации при 290-310°С относительно невелико, что можно объяснить низкой скоростью реакции при этих температурах. По мере снижения объемной скорости подачи сырья глубина деароматизации возрастает. [c.44]

    По мере увеличения зона реакции сдвигается вправо и дпя достаточно больших концентраций при условии достигает ядра потока в фазе 2 (рис. 6.4). [c.268]

    Система уравнений (VII.35), (VII.36) не решается аналитически даже для процессов с простейшей кинетикой. Тем пе менее, ее анализ позволяет установить некоторые особенности решения. При расчете экзотермического процесса наиболее интересной величиной является максимальный разогрев, достигаемый в горячей точке реактора. Если в реактор поступает исходная смесь с температурой, близкой к температуре теплоносителя Г,,, то в сечениях, близких к входному, теплоотвод окажется незначительным и процесс будет проходить в почти адиабатических условиях. В дальнейшем, по мере повышения температуры реагирующей смеси скорость теплообмена возрастает и в некотором сечении сравняется со скоростью тепловыделения. После этого температура реакции, пройдя через максимум, начнет убывать. Верхнюю оценку для достигаемой максимальной температуры можно найти, считая, что процесс протекает адиабатически вплоть до самой горячей точки . Тогда верхняя оценка температуры, при которой скорости тепловыделения и теплоотвода сравняются, может быть найдена по точке пересечения прямой теплоотвода q = а (Т — Т .) и кривой тепловыделения ф (Т) = hr (Т). Последнюю строят с учетом соотношения между концентрацией и температурой (VII.28), которое выполняется в адиабатическом процессе. Кривая тепловыделения и прямая теплоотвода изображены на рис. III.3 они пересекаются в нескольких точках, и верхнюю оценку максимальной температуры дает точка пересечения, соответствующая наименьшей температуре. По мере увеличения температуры теплоносителя прямая теплоотвода сдвигается вправо, и при некотором критическом значении низкотемпературная точка пересечения исчезает. При этом верхняя оценка температуры в горячей точке резко повышается. Формально значение максимальной температуры, конечно, не может измениться скачком. Из теории обыкновенных дифференциальных уравнений следует, что решение системы уравнений (VII.35), (VII.36) непрерывно изменяется с изменением всех параметров, в том числе и (см. также раздел VII.2). Однако в области значений параметров, близкой к той, где кривая тепловыделения касается прямой теплоотвода (рис. III.3, прямая 4), следует ожидать сильной чувствительности температуры в горячей точке к изменению параметров процесса. [c.288]

    Подобное определение может быть отнесено к любой жидкости. Однако строго говоря, это определение справедливо лишь для ньютоновских жидкостей, которые обладают тангенциальным торможением, пропорциональным скорости сдвига (по крайней мере для небольших скоростей сдвига). К их числу относится большинство гомогенных жидкостей с низкой и средней вязкостями. [c.173]


    Аналогичное явление наблюдается и при других химических реакциях. Таким образом, химические реакции—обратимы наряду с химическим взаимодействием между исходными веществами прямая реакция) протекает химическое взаимодействие между продуктами реакции обратная реакция), в результате которого снова образуются исходные вещества. По мере протекания процесса скорость прямой реакции (количество молекул продуктов реакции, образующихся в секунду) уменьшается, а скорость обратной реакции (количество молекул этих продуктов, прореагировавших в секунду) увеличивается. Когда обе скорости сравняются, наступает состояние химического равновесия—число молекул веществ, составляющих химическую систему, перестает меняться и остается постоянным во времени при неизменных внешних условиях. Таким образом, химическое равновесие является динамичным и подвижным—с изменением внешних условий равновесие сдвигается в одну или в другую сторону и возвращается к исходному состоянию, если внешние условия [c.261]

    При увеличении значений й скорость сдвига возрастает сначала линейно, а затем, по мере роста напряжения сдвига, экспоненциально. [c.232]

    При (1 = 0 все его собственные числа X отрицательны. По мере увеличения ц спектр уравнения ( 111.168) сдвигается вдоль действительной оси. Для того чтобы собственные значения возрастали с увеличением (I [так чтобы при некотором значений этого параметра уравнение ( 111.126) имело бы ненулевые решения при Я, = О, когда оно совпадает с ( 111.122)] необходимо, чтобы по крайней мере в некоторой области внутри зерна функция (х) была положительной. [c.359]

    По мере износа рабочих органов кривые характеристики двигателя изменяются. Вследствие снижения момента сил трения линия давления сдвигается к оси М, а возрастание объемов утечек приводит к постепенному приближению кривой характеристики М—п к началу координат и к снижению к. п. д. [c.169]

    Следует отметить специфичность действия катализаторов — каждая реакция ускоряется какими-то определенными катализаторами и не ускоряется другими и, наоборот, каждый катализатор ускоряет какие-то определенные реакции и ие ускоряет других. Это дает возможность, применяя разные катализаторы, получать различные продукты из одних и тех же исходных веществ. Далее, следует отметить, что катализатор в равной мере ускоряет как прямую, так и соответствующую ей обратную реакцию. Это значит, что катализатор никак ие влияет на состояние химического равновесия, не сдвигает его. Роль катализатора, по существу, сводится к тому, что он ускоряет наступление состояния равновесия. Естественно, что практическое использование катаЛ иза целесообразно в тех случаях, когда стремятся именно к достижению состояния равновесия в реакционной системе. [c.96]

    Вязкость прокачивания (pumping vis osity) является мерой способности масла течь и создавать необходимое давление в системе смазки в начальной стадии работы холодного двигателя. Вязкость прокачивания измеряется в сантипуазах (сП = мПа -с) и определяется согласно ASTM D 4684 на мини-ротационном вискозиметре MRV. Этот показатель важен для масел, способных желировать при медленном охлаждении. Таким свойством чаще всего обладают всесезонные минеральные моторные масла (SAE 5W-30, SAE 10W-30 и SAE 10W-40). При испытании определяется либо напряжение сдвига, необходимое для разрушения желе, либо вязкость при отсутствии напряжения сдвига. Вязкость прокачивания определяется при разных заданных температурах (от -15° для SAE 25W до 0°С для SAE 0W). Прокачивание обеспечивается только для масел с вязкостью не более 60 ООО mPa s. Наименьшая температура, при которой масло может прокачиваться, назьшается нижней температурой прокачивания, ее значение близко к наименьшей температуре эксплуатации. [c.45]

    Изучение бимолекулярных реакций присоединения представляет особый интерес, поскольку можно ожидать, что они при достаточно низких концентрациях реагентов дают ту же зависимость скорости реакции от суммарной концентрации, как и в случае мономолекулярных реакций. Действительно, простейшие из таких процессов, например рекомбинация атомов при нормальных концентрациях газа, никогда не подчиняются простому кинетическому закону второго порядка, а проявляют зависимость скорости реакции от концентрации. При этом, согласно эксперименту, кинетика реакции подчиняется закону третьего порядка. Рассматривая зависимость реакции мономолекулярного распада от давления (см. табл. XI.2), можно прийти к заключению, что область зависимости скорости реакции от суммарной концентрации сдвигается все более и более к низким концентрациям по мере того, как растет число атомов в молекуле продукта реакции. Это находится в качественном согласии с экспериментом. Реакция присоединения молекул бутадиена не дает никакого отклонения от закона второго порядка вплоть до давления 10 ммрт. ст. (при 200°С), тогда как скорость рекомбинации радикалов СНз уже дает отклонения в сторону закона третьего порядка при [c.266]

    На рис. У-14 показана кривая изменения 1емпе-рагурного профиля в реакторе при увеличении задаваемого значення х р . Из рисунка видно, что по мере неизотермический участок сдвигается ближе к концу ректоре изменения температуры в пределах этого участка. [c.240]

    При малых нагрузках (обычно при напряжениях сдвига до 50—500 Па) смазки деформируются, подчиняясь закону Гука. Повышение напряжения сдвига (т) приводит к пропорциональному увеличению обратимой линейной деформации (7) испытуемого образца смазки. Дальнейшее увеличение напряжения сдвига (увеличение деформации) приводит к отклонению от линейной зависимости т = /(-у). Одновременно деформация становится не вполне обратимой. При еше большем увеличении напряжения сдвига наиболее слабые связи между частицами загустителя начинают разрушаться. Однако нри этом происходит обратный процесс — установление и упрочнение новых связей между частицами загустителя, приходящими в соприкосновение друг с другом (напрпмер, под действием теплового движения). При малых нагрузках процессы разрушения и восстановления связей компенсируют друг друга. По мере возрастания напряжений сдвига скорость разрушения контактов в структурном каркасе увеличивается и при определенной нагрузке начинает заметно преобладать над скоростью восстановления связей. Важно также то, что при разрушении заметного числа связей нагрузка на оставшиеся связи даже при неизменном напряжении сдвига возрастает. В результате процесс снижения прочности структурного каркаса смазки приобретает са-моускоряющийся, лавинный характер — это соответствует достижению и переходу через предел прочности. Смазка начинает течь подобно вязкой, точнее аномально вязкой жидкости. [c.271]

    В заключение, чгобы показать, насколько важны приближенные волновые функции при интерпретации контактных сдвигов, мы рассмотрим сдвиги в спектрах некоторых комплексов N-окиси 4-метилпиридина [27]. Картина наблюдаемых протонных контактных сдвигов напоминает механизм тг-делокализации со спином, направленным в тс-сис-теме вдоль поля. Исходя из этих сдвигов, можно сделать вывод, что при координации N-окись 4-метилпиридина должна вращаться таким образом, чтобы я-молекулярная орбиталь, которая представляет собой главным образом р -орбиталь кислорода (ось г перпендикулярна плоскости цикла), смещталась с ст-связывающей -совокупностью нике-ля(П), Это приводит к возможности прямой делокализации неспаренного спина по орбитали цикла . Такой тип координации с вращением донора обнаружен в твердом аддукте этого донора. Расчет по методу МО указывает, что некоторые из высокоэнергетических молекулярных орбиталей донора представляют собой главным образом АО кислорода с очень небольщими коэффициентами АО водорода. Таким образом, если даже эти молекулярные орбитали участвуют в связывании с пике-лем(П), они должны давать по крайней мере небольшой непосредственный вклад в протонные контактные сдвиги. [c.185]

    С помощью вискозиметра Штормера были измерены локальные значения напряжений сдвига в псевдоожиженном слое, созданном в аппарате с перфорированными и колпачковыми распределительными решетками. По найденным напряжениям были рассчитаны значения так называемой вязкости в различных точках слоя. Оказалось, что вязкость значительно выше в слое при наличии перфорированных решеток, нежели колпачковых. В первом случае значения вязкости понижались по мере удаления от центра слоя к его перифбрпн, но мало зависели от расстояния над решеткой. Во втором случае, напротив, вязкость не зависела от радиальной координаты, но понижалась с увеличением расстояния от решетки. Очевидно, измерения локальных реологических характеристик слоя могут помочь выявить его структуру. [c.250]

    Заметим, что при 0 >4 процесс может иметь т,ри, стационарных решения (см. раздел II 1.3). Область множественных режимов ограничена кривой 3. Точкам, лежащим между верхними ветвями кривых 1 и 3, соответствует высокотемпературный режим, точкам, лежащим между нижними ветвями этих кривых — ниакотемцера-турный, а точкам, заключенным между двумя ветвями кривой 1 — промежуточный режим, неустойчивый в силу условия (VIII.23) или (III.51), При уменьшении параметра вначале теряет устойчивость высокотемпературный режим в области больших значений 0, затем, по мере движения точки пересечения кривых 1 т 2 влево, область неустойчивости высокотемпературного режима сдвигается в сторону меньших значений 0. При S <9/16 кривая 2 заходит в область слева от кривой 3, где существует только один стационарный режим. В этой области значений параметров процесс, таким образом, не будет иметь ни одного устойчивого стационарного режима. Наконец, при S <1/2 кривые 1 ш 2 начинают пересекаться ниже точки 0 = 4, 0=2, разделяющей высокотемпературную и низкотемпературную ветви кривой 1. В этих условиях появляются неустойчивые низкотемпературные режимы процесса, причем на мере уменьшения ё такие режимы становятся возможными нри вс больших значениях параметра 0. [c.331]

    Спектральные, радиоспектросконпческие [12, 69, 395, 396 и др.] и масс-спектрометрические [379, 1013, 1045, 1052 и др.] данные свидетельствуют о сравнительно небольших средних размерах отдельных конденсированных полиароматических блоков в молекулах ВМС нефтей (3—4 бензольных цикла). Установлено, что фракции асфальтенов с различными молекулярными массами характеризуются весьма сходными электронными спектрами, содержащими широкую неразрешенную полосу поглощения с максимумом около 260 нм, п.лавно спадающую в длинноволновой области [69]. Отсутствие батохромного сдвига этого максимума поглощения по мере увеличения молекулярной массы асфальтеновых фракций указывает, что укрупнение молекул идет без повышения степени конденсированности ароматических систем, за счет роста числа связывающихся изолированных (не сопряженных) ароматических ядер. Еще ранее на примере ряда американских нефтей показано [1052], что с увеличением возраста вмещающих отложений и глубины катагенной превращениости нефти заметно повышается доля атомов С в ароматических циклах асфальтеновых молекул, особенно в пери-конденсированных структурах, но [c.194]

    Процессы деформирования, формоизменения, течения и другие определяются соотношением между энергией (или прочностью) связей и их числом в единице объема с величиной подводимой к этим связям механической энергией [42]. Поэтому эффективная вязкость дисперсных систем Лэф по мере увеличения скорости деформирования V или напряжения сдвига может уменьшаться на пять-семьцорядков от наибольшей вязкости для неразрушенной структуры Лд в отсутствие воздействий до наименьшей Лт1п> соответствующей предельно разрушенной структуре (рис. 6.11). [c.140]

    К засыпке траншей приступают после проверки правильности укладки трубопровода и испытания герметичности и прочности сварных соединений. При засыпке трубопровода необходимо принять меры, исключающие повреждение сварных соединений и труб, а также сдвиг труб, в траншее. В первую очередь засыпают приямки и подбивают грунт сбоку труб для предупреждения их сдвига. Грунт при этом тщательно уплотняют. Сверху трубы засыпают слоем грунта на высоту 250— 300 мм, чтобы не повредить изоляцию и сами трубы при засыпке. Затем производят засыпку с помошью бульдозеров, тщательно уплотняя грунт. В зимнее время трубы укладывают в траншеи сразу же после очистки ее дна и засыпают грунтом на глубину не менее 300—500 мм над верхом трубопровода. [c.364]

    Другой машиной, относящейся к бесгинековым экструдерам, является дисковый экструдер, в значительной мере усовершенствованный в иоследрше годы [211]. Эта установка работает по иринцину эффекта Вайсенберга, согласно которому усилия, возникающие в материале, иаходяи1емся между двумя дисками, вращающимися один относительно другого, направлены перпендикулярно напряжению сдвига. Производительность и давление дискового экструдера в большой мере зависят от диаметра дисков. [c.182]

    Обычно рассматривают соотношения изомеров мета1пара и орто/пара. Если на соотношение мета/пара влияют электронные сдвиги заместителя и энергетические факторы алкилирующего агента, то на соотношение орто1пара — фактор стерических препятствий и химического взаимодействия. Теоретическое соотношение изомеров орто/пара, равное 2 1, снижается по мере увеличения объема заместителя или атакующего агента. [c.42]

    При деформации среды в условиях активного бокового давления характер и интенсивность сдвигов определяются суммарным действием напряжений внутреннего и внешнего полей, относительная роль которых изменяется по мере развития процесса. На первой стадии в большей степени проявляется действие напряжений внешнего поля. Затем пpqи xoдит перестройка полей напряжений, что проявляется в изменении пространственного распреде-144 [c.144]

    Поскольку обычно Яр1>Ур1, условие (2.60) является определяющим для выбора массы незаглубленного якоря. В связи с этим следует заметить, что незаглубленные якори обычной конструкции рационально применять для восприятия сравнительно небольших усилий (примерно до 100 кН). Якори на большие усилия следует выполнять полузаглубленными или принимать меры против сдвига их под действием горизонтальной составляющей усилия в расчалке. При этом надо увеличивать величину (например, забивать перед якорем несколько труб, устраивать шипы на опорной поверхности якоря и др.). [c.75]


Смотреть страницы где упоминается термин Сдвиг меры: [c.22]    [c.90]    [c.451]    [c.279]    [c.282]    [c.45]    [c.79]    [c.82]    [c.96]    [c.180]    [c.181]    [c.177]    [c.111]    [c.139]   
Спектральные методы в бесконечномерном анализе (1988) -- [ c.125 ]




ПОИСК







© 2024 chem21.info Реклама на сайте