Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Кислотность неводных растворителей

    Степень влияния воды зависит от соотношения шкал кислотности неводного растворителя и воды и их расположения. Например, вода практически не оказывает влияния на кислотные пределы шкалы низших спиртов, но значительно изменяет основные пределы шкалы изопропилового и т/ ет-бутилового спиртов (рис. 145), так как основные пределы их шкалы значительно больше, чем у воды. [c.428]


    ОТНОСИТЕЛЬНАЯ ШКАЛА КИСЛОТНОСТИ НЕВОДНЫХ РАСТВОРИТЕЛЕЙ [c.55]

    Относительная шкала кислотности неводных растворителей [c.57]

    Щелочное, кислотное числа, кислотность Нефтепродукты и присадки Потенциометрическое титрование продукта, растворенного в неводном растворителе, раствором едкого кали или соляной кислоты 11362-76 [c.47]

    Кислотно-основное титрование (иногда называется также методом нейтрализации). В качестве рабочих титрованных растворов (реактивов) применяют обычно кислоты и щелочи. Определять этим методом можно кислоты, щелочи, соли слабых кислот и соли слабых оснований, а иногда также вещества, которые реагируют с такими солями. Если в растворе содержится несколько компонентов, имеющих различные кислотно-основные свойства, нередко возможно раздельное определение таких компонентов в их смеси. Применение неводных растворителей (спирт, ацетон и т. п.), в которых степень диссоциации кислот и оснований сильно изменяется, позволяет расширить число веществ, которые можно определять титрованием кислотами или основаниями. -% [c.272]

    Важной характеристикой растворителя, влияющей на механизм реакции, является диэлектрическая проницаемость, от которой в первую очередь зависит состав частиц, на которые распадаются вещества-электролиты в растворе (разд. 34.2.4). Кроме того, диэлектрическая проницаемость растворителя влияет на процесс диссоциации, а также кислотно-основное равновесие. Так, рекомбинация ионов в нейтральные молекулы происходит преимущественно в растворителях с низким значением диэлектрической проницаемости г, а увеличение е способствует их диссоциации. Выбор подходящего растворителя или их смеси позволяет получить любое значение е среды, в которой протекает реакция. Этим широко пользуются при титровании в неводных растворителях (разд. 39.9). [c.457]

    Влияние неводных растворителей на интервал перехода окраски индикатора. 3)лектролиты, растворенные в неводных растворителях, менее диссоциированы, чем в воде, что связано с более низким значением диэлектрической проницаемости неводных растворителей по сравнению с водой и более низкой энергией сольватации ионов. Таким образом, кислотный индикатор изменил бы свою окраску в спиртовом растворе при большем значении pH, чем в воде. [c.145]


    Кислотность в неводных растворителях [c.339]

    Кислотно-основное титрование в неводных растворителях широко применяют в анализе лекарственных препаратов, представляющих собой слабые и очень слабые кислоты и основания, а также смеси кислот, оснований, солей. Анализ таких соединений и смесей в водной среде невозможен. [c.109]

    Титрование в неводных и смешанных растворителях открывает возможности аналитических определений, не осуществимых в водном растворе. В неводных растворителях могут быть определены нерастворимые или разлагающиеся в воде соединения, проанализированы без предварительного разделения многие сложные смеси, оттитрованы соединения, кислотные или основные свойства которых в воде выражены очень слабо, и т. д. Расчет кривых титрования во многих неводных растворителях осложняется по сравнению с таким же расчетом для водных растворов неполнотой диссоциации растворенных веществ, образованием ионных пар и т. д. Количественные характеристики этих процессов часто отсутствуют. Сами кривые титрования имеют примерно такой же общий вид, как и кривые титрования водных растворов. Точка эквивалентности в неводных растворах устанавливается также с помощью цветных индикаторов или рН-метров. Конечно, интервал перехода индикаторов и сама их окраска в неводных растворителях могут меняться по сравнению с соответствующими свойствами в водных растворах, однако механизм индикаторного действия сохраняется. В неводных титрованиях обычно применяют те же известные по анализу водных растворов индикаторы — фенолфталеин, метиловый красный и др., широко используют рН-метры, особенно при анализе смесей. [c.217]

    Особый интерес в связи с проблемой единой шкалы кислотности (см. гл. IX) представляют данные об изменении энергии (изобарного потенциала) при переносе протона из неводного растворителя в воду и соответственно данные о коэффициентах активности y о отдельно протона. Для их оценки необходимы данные об изменении изобарного потенциала — химической энергии сольватации протона в различных неводных растворителях и в воде. [c.202]

    При решении проблемы о кислотностях неводных растворов с.ледует поставить два вопроса. Как поступать при сравнении кислотности двух растворов в одном и том же растворителе Например, как оценить, насколько один спиртовой раствор кислее другого Как поступать при сравнении кислотности растворов в двух разных растворителях Например, как оценить кислотность растворов одной и той же сильной или слабой кислоты в воде и спирте Эта задача отличается принципиально от задачи сравнения между собой кислотности в пределах одного растворителя. [c.407]

    Задача сравнения кислотности в пределах одного неводного растворителя принципиально не отличается от задачи определения pH в водных растворах. Величина pH определяется отрицательным логарифмом активности ионов водорода в данном растворителе М  [c.408]

    Как же сравнивать кислотность в двух различных растворителях Как решить вопрос о том, какой раствор кислее — водный с pH = 3 или спиртовой с тем же рНр = 3 Вопрос о сопоставлении кислотности представляет большие трудности как принципиального, таки экспериментального характера. Эти затруднения пытались решать разными методами. Самой правильной является постановка вопроса о кислотности неводных растворов Бренстеда. Бренстед предлагает во всех растворах считать мерой кислотности абсолютную активность протона или величину, ей пропорциональную, — химический потенциал протона  [c.410]

    Однако последние работы показали, что нет оснований считать, что в действительности величина Н передает кислотность неводных растворов. Предположение о том, что константа индикатора не изменяется при переходе от растворителя к растворителю, очень сомнительно. [c.414]

    Мы установили, что метод Гамметта непригоден для определения абсолютной кислотности. Рассмотрим, насколько он пригоден для определения кислотности в пределах одного неводного растворителя. [c.416]

    Есть и третий недостаток метода Гамметта, заключающийся в том, что иногда окраска индикатора изменяется не в связи с изменением соотношения между разными формами индикаторов B№ и В, а в связи с тем, что окраска одной из форм индикатора изменяется под влиянием растворителя. Однако главный недостаток метода Гамметта состоит в том, что влияние растворителей на заряженную и незаряженную формы индикатора не одинаково, в связи с чем не передает истинной кислотности неводных растворов. [c.416]

    Все перечисленные выше методы не позволяют однозначно оценить кислотность неводных растворов в единой шкале. Вопрос об этой шкале может быть решен только на основании данных о величинах химической энергии сольватации протонов в различных растворителях. В настоящее время эти данные получены на основании подсчетов сумм и разностей химических энергий сольватации ионов в неводных растворах из данных об электродвижущих силах цепей без переноса и с переносом в неводных растворах. Путем экстраполяции величин суммарной энергии сольватации ионов водорода и ионов галогенов (ионы галогеноводородных кислот) и разностей энергий сольватации ионов водорода и ионов щелочных металлов, как было сказано в гл. IV, была определена энергия сольватации протона и других ионов в различных растворителях. [c.419]


    При переходе от водного к неводноМу раствору следует считаться с тем, что протяженность шкалы различна для разных растворителей. Для того чтобы оценить абсолютную кислотность, кроме протяженности шкалы нужно знать, как смещено начало шкалы кислотности одного растворителя по отношению к шкале кислотности воды. [c.419]

    Применение неводных растворителей ири кислотно-основном титровании. Классификация случаев улучшения условий кислотно-основного титрования в неводных средах [c.444]

    II соотношение в силе кислот и оснований. Поэтому применение неводных растворителей может значительно улучшить условия кислотно-основного титрования. [c.444]

    Практика кислотно-основного анализа еще далеко не использовала всех преимуществ, которые могут дать неводные растворители. Применение неводных растворителей для улучшения условий титрования использовано главным образом в первом случае и мало использовано в третьем и четвертом случаях. [c.444]

Таблица 48. Сводная таблица условий применения неводных растворителей при кислотно-основном титровании Таблица 48. <a href="/info/194276">Сводная таблица</a> условий <a href="/info/362564">применения неводных растворителей</a> при <a href="/info/2992">кислотно-основном</a> титровании
    В связи с широким применением неводных растворителей применение единой шкалы кислотности приобретает большую роль. Кислотно-основные процессы получили распространение в химической промышленности (нейтрализация, гидролиз, травление металлов и т. п.). Регулированием кислотности добиваются увеличения скоростей реакции и изменения их механизма. В этом состоит, например, сущность кислотно-основного катализа. Величина кислотности стала одной из важных характеристик, используемых для автоматического контроля и регулирования большого числа процессов. [c.291]

    Оценка кислотности неводных растворов. При оценке кислотности неводных растворов возникает необходимость сравнения кислотности различных веществ в одном и том же неводном растворителе, как это делается при оценке кислотности водных растворов. С другой стороны, большое значение имеет сравнение кислотности растворов электролитов, растворенных в различных растворителях. [c.414]

    Определение относительной кислотности раствора электролита в данном неводном растворителе принципиально не отличается от определения ее для водных растворов. Т м не менее при определении pH в неводных растворах допускается большое количество ошибок. Например, при измерении pH неводных растворов по отношению к насыш ен-ному водному каломельному электроду возникают наиболее серьезные ошибки. Величины pH неводных растворов не могут быть правильно измерены, если пользоваться для измерения pH неводных растворов рН-метром, откалиброванным по водным стандартам. [c.415]

    Для оценки кислотности неводных растворов Н. А. Измайловым предложена шкала рНр, специфичная для данного растворителя, и щкала рА, универсальная для всех растворителей. [c.415]

    Необходимо отметить, что в настоящее время кроме наиболее широко распространенного растворителя — воды используются и неводные растворители, К ним относятся кислотные растворители, [c.37]

    Таким образом, несмотря на различия в способах измерения количества продукта реакции, между отдельными методами первой группы имеется много общего в вопросах методики изучения и использования химической реакции значение произведения растворимости осадков в весовом анализе аналогично значению констант диссоциации окрашенных соединений в колориметрии много общего также в вопросах влияния кислотности раствора, неводных растворителей, посторонних реагирующих и не реагирующих веществ, постоянства состава продукта реакцип и т. д. Иногда колориметрический анализ необоснованно относят к другим группам, например к ( )изико-химиче-ским или к аппаратурным . Однако очевидно, что колориметрически анализ не более физичен по своей сущности, чем весовой (или объемный), а аппаратура колориметрического анализа обычно не более сложна или точна, чем аналитические весы. [c.24]

    Успехи органической химии привели к синтезу многих но-еых органических растворителей с большим диапазоном разнообразных свойств, а с развитием лабораторной техники появилась возможность работать с новыми неорганическими растворителями при повышенных и пониженных температурах и без-Доступа влаги. Все это позволило в некоторых случаях замедлить воду, являющуюся до сих пор универсальным растворителем. Особенно часто воду заменяют другими растворителями при кислотно-основноМ титровании. Причинами служат плохая растворимость некоторых веществ в воде, что особенно характерно для многих органических соединений мешающее влияние гидролиза, например, при титровании кислот в присутствии хлоридов или соответственно ангидридов кислот нивелирующий эффект растворителя, из-за которого невозможно Проводить дифференцированное титрование сильных кислот или оснований в их смеся х высокая полярность воды, что-исключает возможность диффренцированного титрования карбоновых кислот в их смесях. Применению неводных растворителей способствовало также создание чувствительных и надежных инструментальных методов индикации точки эквивалентности. [c.337]

    Соли неорганических кислот в неводных растворителях проявляют кислые, основные или нейтральные свойства в зависимости от их анионов, катионов и применяемого в каждом конкретном случае растворителя. Была сделана попытка расположить ионьг в ряд в соответствии с уменьшением их кислотных свойств Mg2+> a +>Sг2+>Ba2+>Li+>Na+> NH4+ = = К+>НЬ н С104->1->Вг->С1->М0з- [c.346]

    Измеренная по отношению к стандарту в данном растворителе величина pH не является абсолютной мерой кислотности неводного раствора и может быть использована для характеристики кислотности только в пределах данного растворителя. Это следует ид того, что начало шкалы кислотности РаНр = о не соответствует равенству абсолютных активностей ионов водорода во всех растворителях. Величины р Н нейтральных растворов в разных растворителях не совпадают друг с другом, так как протяженность шкал, зависящая от ионного произведения растворителя, различна. В верхней части рис. 105 в качестве примера приведены шкалы рНр в воде и некоторых неводных средах. В воде шкала pH изменяется от О до 14 нейтральным раствором называется раствор с pH = 7. Если раствор имеет pH = О, это раствор кислоты с активностью ионов №, равной единице если раствор имеет pH = 14, это раствор щелочи с активностью ионов ОН", равной единице, но это не значит, что не может быть растворов в воде с pH меньше нуля и больше 14. [c.409]

    Под влиянием неводных растворителей изменяются свойства любых электролитов кислот, оснований и солей. В зависимости от растворителя одно и то же вещество может быть неэлектролитом, сильным или слабым элехгтролитом, кислотой или основанием или же вовсе не проявлять кислотно-основных свойств. Эта изменчивость свойств веш еств под влиянием растворителей может быть с успехом использована для решения ряда аналитических задач при кислотно-основном тптрованпи, при титровании по методу осаждения, при полярографическом анализе п при других методах анализа. [c.440]


Смотреть страницы где упоминается термин Кислотность неводных растворителей: [c.927]    [c.198]    [c.217]    [c.254]    [c.197]    [c.250]    [c.328]   
Основы аналитической химии Кн 3 Издание 2 (1977) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Неводные растворители



© 2025 chem21.info Реклама на сайте