Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Кислотность неводных растворителей шкала

    Степень влияния воды зависит от соотношения шкал кислотности неводного растворителя и воды и их расположения. Например, вода практически не оказывает влияния на кислотные пределы шкалы низших спиртов, но значительно изменяет основные пределы шкалы изопропилового и т/ ет-бутилового спиртов (рис. 145), так как основные пределы их шкалы значительно больше, чем у воды. [c.428]


    ОТНОСИТЕЛЬНАЯ ШКАЛА КИСЛОТНОСТИ НЕВОДНЫХ РАСТВОРИТЕЛЕЙ [c.55]

    Относительная шкала кислотности неводных растворителей [c.57]

    Особый интерес в связи с проблемой единой шкалы кислотности (см. гл. IX) представляют данные об изменении энергии (изобарного потенциала) при переносе протона из неводного растворителя в воду и соответственно данные о коэффициентах активности y о отдельно протона. Для их оценки необходимы данные об изменении изобарного потенциала — химической энергии сольватации протона в различных неводных растворителях и в воде. [c.202]

    Все перечисленные выше методы не позволяют однозначно оценить кислотность неводных растворов в единой шкале. Вопрос об этой шкале может быть решен только на основании данных о величинах химической энергии сольватации протонов в различных растворителях. В настоящее время эти данные получены на основании подсчетов сумм и разностей химических энергий сольватации ионов в неводных растворах из данных об электродвижущих силах цепей без переноса и с переносом в неводных растворах. Путем экстраполяции величин суммарной энергии сольватации ионов водорода и ионов галогенов (ионы галогеноводородных кислот) и разностей энергий сольватации ионов водорода и ионов щелочных металлов, как было сказано в гл. IV, была определена энергия сольватации протона и других ионов в различных растворителях. [c.419]

    При переходе от водного к неводноМу раствору следует считаться с тем, что протяженность шкалы различна для разных растворителей. Для того чтобы оценить абсолютную кислотность, кроме протяженности шкалы нужно знать, как смещено начало шкалы кислотности одного растворителя по отношению к шкале кислотности воды. [c.419]

    В связи с широким применением неводных растворителей применение единой шкалы кислотности приобретает большую роль. Кислотно-основные процессы получили распространение в химической промышленности (нейтрализация, гидролиз, травление металлов и т. п.). Регулированием кислотности добиваются увеличения скоростей реакции и изменения их механизма. В этом состоит, например, сущность кислотно-основного катализа. Величина кислотности стала одной из важных характеристик, используемых для автоматического контроля и регулирования большого числа процессов. [c.291]


    Для оценки кислотности неводных растворов Н. А. Измайловым предложена шкала рНр, специфичная для данного растворителя, и щкала рА, универсальная для всех растворителей. [c.415]

    Вот почему ряды напряжений металлов в неводных растворителях нередко выглядят совсем по иному, чем в привычной воде. Растворитель может сжимать либо растягивать шкалы стандартных электродных потенциалов, может сдвигать их в ту или иную сторону. Так, кислотный растворитель, муравьиная кислота, сдвигает величины потенциалов в отрицательную область основные растворители, гидразин или аммиак, сдвигают шкалу в положительную сторону. [c.75]

    Решение аспекта кислотности неводных растворов апротонных кислот — сопоставление силы одной кислоты в разных растворителях—значительно труднее. В случае Н-кислот данная проблема решается разработкой единой шкалы кислотности, предложенной [c.45]

    В лаборатории неводных растворов кафедры аналитической химии МХТИ им. Д. И. Менделеева проведены измерения относительной шкалы кислотности тридцати неводных растворителей, используемых в качестве среды для дифференцированного титрования смесей кислот или смесей оснований. К числу исследованных растворителей относятся гликоли, спирты, кетоны, ацетонитрил, нитропроизводные углеводородов, диметилформамид, пиридин и смеси углеводородов со спиртами, кетонами, нитрилами и др. Смешанные растворители содержали отдельные компоненты в соотношениях, которые обычно рекомендуются для использования при титровании многокомпонентных смесей кислот или оснований. [c.55]

    Значения потенциалов полунейтрализации кислот и оснований зависят от многих факторов, поэтому определение относительной шкалы кислотности каждого растворителя проводилось с одной и той же системой титрантов хлорная кислота — гидроокись тетраэтиламмония и одной и той же системой электродов стеклянный— насыщенный каломельный. Идеальным случаем явился бы тот, при котором растворы хлорной кислоты и гидроокиси тетраэтиламмония приготовлялись бы в среде исследуемого растворителя. Однако, если это условие выполнимо почти для всех случаев в отношении хлорной кислоты, то раствор гидроокиси тетраэтиламмония в силу некоторых технических причин или в силу нерастворимости гидроокиси тетраалкиламмония в некоторых растворителях готовился в среде смешанного растворителя бензол—метиловый спирт, находящего наиболее широкое применение при титриметрических определениях в аналитической химии неводных растворов. [c.56]

    Измеренная по отношению к стандарту в данном растворителе величина pH не является абсолютной мерой кислотности неводного раствора и может быть использована для характеристики кислотности только в пределах данного растворителя. Это следует из того, что начало шкалы кислотности р, Нр==0 не соответствует равенству абсолютных активностей ионов водорода во всех растворителях. Величины р Н нейтральных растворов в разных растворителях не совпадают друг с другом, так как протяженность шкал, зависящая от ионного произведения растворителя, различна. Е> верхней части рис. 116 в качестве примера приведены шкалы рНр в воде и некоторых неводных средах. В воде шкала pH изменяется от О до 14 нейтральным раствором называется раствор с pH=7. Если раствор имеет рН = 0, это раствор кислоты с активностью ионов Н , равной единице если раствор имеет рН=14, это раствор щелочи с активностью ионов ОН", равной единице, но это не значит, что не может быть растворов в воде с pH меньше нуля и больше 14. [c.476]

    Несколько слов о целях настоящей работы. Термин pH в заглавии, по-видимому, чрезмерно ограничен здесь, как и почти во всей литературе, он используется для краткого обозначения понятия шкала кислотности . Вероятно, эта неточность простительна, потому что шкала pH, несомненно, лучшая из всех известных шкал кислотности кроме того, предприятиями, изготовляющими приборы, уже выпущено большое число рН-метров. Инструкции к рН-метрам не запрещают использовать эти приборы для измерений в неводных растворителях. Действительно, специальные усовершенствования, сделанные в некоторых новейших рН-метрах, позволяют получать хорошо воспроизводимые результаты в растворах, в которых находится сравнительно небольшое количество ионов водорода (или других ионов). Многогранность этих новых приборов следует рассматривать не как недостаток, а скорее как вызов исследователям. Благодаря легкости экспериментального определения pH в неводных и смешанных с водой растворителях становятся существенными исследования природы кислотно-основных взаимодействий в таких средах и поиски зависимостей между значениями pH и важнейшими термодинамическими константами, характеризующими кислотность или основность в этих растворителях. Современная наука и техника все более нуждаются в четких представлениях о кислотности в неводных растворителях и методах, позволяющих количественно ее описывать. Вероятно, взаимодействие протонов с молекулами растворителя в значительной мере определяет уровень кислотности , достигаемый в данном растворителе. [c.305]


    Поскольку протяженность абсолютных шкал кислотности УА и УК относительно мала (примерно в два раза меньше, чем, например, у ацетонитрила), для ее увеличения с целью улучшения условий титрования рекомендуется добавлять в уксусный ангидрид или в смесь его с уксусной кислотой другие неводные растворители (например, хлороформ). Это способствует резкому увеличению скачков титрования и улучшению условий дифференцированного титрования [197]. [c.57]

    Совместно со своими учениками и сотрудниками Шкодиным, Александровым, Безуглым, Ивановой, Дзюбой и другими Измайлов исследовал большое число неводных растворителей и растворов электролитов на их основе им была обоснована единая шкала кислотности и показана несостоятельность других методов сравнения кислотности в различных растворителях он доказал, что поведение электролитов в различных растворителях зависит не только от их физических свойств (например, от диэлектрической проницаемости, как это вытекает из теории Фуосса и Крауса), но и от химической природы растворенного вещества и растворителя им разработана количественная теория диссоциации электролитов в растворах и предложена схема равновесий, отличная от схем, предложенных другими учеными. Главная роль по влиянию растворителя на силу электролитов отводится образованию продуктов присоединения сольватированных ионов и возможности их ассоциации. [c.140]

    Для оценки кислотности неводных растворов Измайлов предложил шкалу рНр, специфичную для данного растворителя (табл. 13, рис. 22) и шкалу рА, универсальную для всех растворителей. [c.192]

    Практически рабочую шкалу кислотности в неводном растворителе, стандартизованном с помощью водных буферных эталонов, можно выразить так [c.104]

    Не менее важное значение имеет величина Кз для рН-метрии. Вопрос о кислотности неводных растворов изучен недостаточно. Различные значения Кз растворителей указывают, что каждый из них должен иметь свою шкалу кислотности. По величине pH водных буферных растворов не- [c.57]

    В неводных растворителях или концентрированных сильных кислотах значения коэффициентов активности значительно отличаются от единицы к тому же их определение на основе потенциометрических измерений обременено большой ошибкой, главной причиной которой является диффузионный потенциал. Поэтому в этих случаях возрастает значение спектрофотометрического метода определения шкалы кислотности, основанного на измерении концентрации обеих (кислотной и основной) форм индикатора с помощью спектров светопоглощения. Такое измерение аналогично спектрофотометрическому определению pH (разд. 2-15) с использованием индикатора с известной константой диссоциации, определявшейся в разбавленных водных растворах. Таким образом, из уравнения [c.158]

    Понятие кислотности и основности среды широко используют при описании разнообразных химических превращений пе только в водных, но и в неводных растворителях. Большие практические успехи применения ряда функций кислотности (функций активности протона), в частности pH для водных растворов, оправдывают многочисленные попытки построения единой шкалы кислотности [54]. [c.259]

    Обычно индикаторы выбираются для данного конкретного случая кислотно-основного титрования экспериментально. Получают кривые потенциометрического титрования и отмечают переходы окраски ряда индикаторов, чтобы определить, какой из переходов совпадает с конечной точкой нотенциометрического титрования. В воде, если известно pH в точке эквивалентности, выбор правильного индикатора не вызывает затруднений, так как pH переходов окраски различных индикаторов известен. На рис. 10 показаны полезные области pH в воде для некоторых индикаторов этот рисунок можно использовать как руководство при выборе индикатора в соответствии с конечной точкой потенциометрического титрования для кислотно-основных титрований. Приведенные индикаторы были выбраны на основании четких, просто определяемых изменений их окраски. Перечисленные индикаторы, у которых изменение окраски происходит при малых значениях pH, мало приемлемы для водных растворов, так как конечные точки потенциометрического титрования в этой области определяются обычно не очень хорошо. Однако эти индикаторы рекомендуется использовать в неводных растворителях. О шкале индикаторов в неводных средах имеется очень мало сведений. Обычно для этих сред индикаторы выбирают экспериментально, беря за основу их поведение в воде. Индикаторы, перечисленные на рис. 10, хорошо функционируют в дифференцирующих растворителях и обычно сохраняют в них свои сравнительные точки перехода. Если при оценке индикатора для конкретного случая применения в неводной среде область изменения окраски индикатора оказывается слишком кислой, тогда для следующей пробы следует выбрать индикатор, стоящий в шкале предыдущим. [c.32]

    Для Оценки кислотности неводных растворов Измайловым, предложена шкалэ рНр, специфичная для данного растворителя, и шкала рА, универсальная для всех растворителей. Протяженность шкал кислотности определяется значением константы автопротолиза (ионного произведения) растворителей /Сх и измеряется показателем этой константы рК (см-разд. 13.1.3). Например, иоиное произведение уксусной кислоты 10" моль /л , поэтому шкала рНр ее равна приблизительно 13 единицам, точка нейтральности находится при pH 6,5. Шкала рНр этанола — 19,3 единиц, точка нейтральности находится при pH 9,65. Для апротонных недиссоцииро-ванных растворителей шкала рНр, соответственно, должна быть бесконечно большой. [c.34]

    Зольшой практический интерес представляет определение относительной шкалы кислотности органических растворителей путем титрования в их среде наиболее сильных кислот и оснований, например хлорной кислоты и гидроокиси тетраариламмония. Указанные электролиты обычно используются в качестве наиболее сильных кислых или основных титрантов при определении оснований и кислот в неводных растворах. Такой метод был использован Ван-дер-Хейде и Даменом [149], которые определили относительную шкалу кислотности двенадцати растворителей, обладающих различными кислотно-основными свойствами. [c.55]

    Измеренная по отношению к стандарту в данном растворителе величина pH не является абсолютной мерой кислотности неводного раствора и может быть использована для характеристики кислотности только в пределах данного растворителя. Это следует из того, что начало шкалы кислотности РаНр = о не соответствует равенству абсолютных актив- [c.779]

    Для ознакомления с некоторыми из наиболее конструктивных взглядов на кислотность и на проявление кислотно-основного поведения следует обратиться к работам Бренстеда [4, 5]. Предложенная Бренстедом концепция кислотности растворов оказалась особенно пригодной для определения кислотно-основного поведения в растворителях, которые или содержат некоторое количество воды, или же по своей природе и поведению (амфо-терность) напоминают воду. Весьма ценны такие шкалы измерений, которые прямо или косвенно основаны на чувствительности к водородному электроду. Однако с точки зрения современных представлений химической кинетики, физической химии и химии неводных растворителей эта теория применима ограниченно и не охватывает всего многообразия кислотно-ос-новных взаимодействий. В этой ситуации могут оказаться плодотворными более широкая концепция Льюиса [6] или специальные подходы к системам растворителей. [c.308]

    Предыдущее обсуждение показало, что на пути к созданию шкалы pH для неводного растворителя стоят два главных препятствия. Они имеют место как для амфотерных и смешанных (водоподобных) растворителей, так и для апротонных (инертных) растворителей. Эти препятствия — следствие отсутствия прямого и надежного метода разделения свободной энергии переноса электролита на ионные составляющие, без которого не может быть определен эффект среды для иона водорода. Эти трудности лежат в основе главного препятствия на пути создания общей шкалы кислотности для всех растворителей. Подобное ограничение не позволяет также создать теоретически удовлетворительную шкалу активностей иона водорода даже для одного растворителя, и вода в этом отношении не является исключением. [c.339]

    Для стандартизации абсолютной (универсальной, единой), термодинамически строго обоснованной для всех растворителей шкалы кислотности рА, строящейся на основе термодинамических констант автопротолиза, Измайлов воспользовался средними коэффициентами активности сильных кислот в среде неводных растворителей. [c.194]

    Бейтс [75] указывает, что для надежного экспериментального установления практической шкалы pH в данном растворителе необходимо, чтобы водородный электрод и электроды А —Ag l были термодинамически обратимыми и стабильными в этом растворителе, чтобы стеклянный (или какой-либо другой) электрод вел себя в соответствии с законом Нернста, а потенциал жидкостного соединения как можно меньше подвергался бы влиянию изменения кислотности раствора. Эталонное значение pH следует подбирать таким образом, чтобы оно было наиболее близко к pH исследуемого раствора и давало бы рациональные значения pH исследуемых растворов. Для измерения pH в неводном растворителе можно воспользоваться методом калибровки практической шкалы pH с помощью буферных растворов, приготовленных специально для этой цели в каком-либо определенном растворителе. Бейтс рекомендует растворители, близкие к воде, например оксид дейтерия (тяжелая вода). Рабочая шкала pH для оксида дейтерия описана в разд. 3-11. [c.102]

    Методы на основе измерения электродвижущих сил щироко используются при изучении химических равновесий в водных растворах, однако в случае неводных растворителей они имеют ограниченную применимость. Трудно построить измерительную ячейку, имеющую малый и легко воспроизводимый диффузионный потенщ1ал и не имеющую промежуточного электролита. Стеклянный электрод, щироко используемый для водных растворов, для большинства неводных растворов непригоден, а в ряде случаев дает очень низкую точность. Анализ данных, полученных с его помощью, затруднен вследствие пределов шкал кислотности, используемых в таких системах. Ион-селективные и жидкостные мембранные электроды тоже непригодны для неводных растворов. [c.252]


Смотреть страницы где упоминается термин Кислотность неводных растворителей шкала: [c.927]    [c.159]    [c.159]   
Основы аналитической химии Кн 3 Издание 2 (1977) -- [ c.428 ]




ПОИСК





Смотрите так же термины и статьи:

Неводные растворители

Тау-шкала

Шкала кислотности



© 2025 chem21.info Реклама на сайте