Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Тантал строение

    Элементы подгруппы ванадия ванадий, ниобий и тантал. Строение атомов и свойства элементов. [c.250]

    На рис. 1, б показано расположение фазовых областей на изотермическом сечении при 820°. При температурах ниже точки полиморфного превращения циркония (862°) на изотермических сечениях появляется новая фаза а. Как показали исследования, растворимость молибдена и тантала в azr при температурах 820° очень мала ( 0,б вес.% Мо + Та), поэтому практически циркониевый угол системы занят двухфазной областью a+ zr. В области больших добавок молибдена и тантала строение изотермического сечения при 820° остается таким же, как и при более высоких температурах 1500— 1000°. [c.224]


    Ванадий, ниобий и тантал между собой и с металлами, близко расположенными к ним Q периодической системе (подгрупп железа, титан,1 и хрома), образуют металлические твердые растворы. По мере /величения различий в электронно.м строении взаимодействую- [c.541]

    Ванадий, ниобий и тантал между собой и с металлами, близко расположенными к ним в периодической системе (подгрупп железа, титана и хрома), образуют металлические твердые растворы. По мере увеличения различий в электронном строении взаимодействующих металлов возможность образования твердых растворов уменьшается [c.438]

    Каково строение электронных оболочек атомов ванадия, ниобия и тантала Охарактеризуйте их валентности и степени окисления в соединениях. [c.166]

    Рассмотренные теоретические соотношения представляют интерес не только мри изучении строения двойного электрического слоя на типичных полупроводниках. Большая группа металлических электродов, таких, как алюминий, тантал, ниобий, титан и др., в водных растворах покрывается толстым слоем фазовых окислов, обладающих полупроводниковыми свойствами. Поэтому изучение строения границы полупроводник — раствор может оказаться полезным при исследовании строения двойного слоя на таких электродах. [c.142]

    Сходное электронное строение, близость атомных и ионных радиусов, обусловленная лантаноидным сжатием, приводит к большому химическому сходству ниобия и тантала (рис. 3.79), а частности к существованию многочисленных изоморфных соединений. [c.499]

    ГЛАВА XVI ВАНАДИЙ, НИОБИЙ, ТАНТАЛ 1. Строение атомов и их физические константы [c.303]

    Строение иона [ЭР ] - для ниобия и тантала однотипно [ (ЭР) = 1,96 А] и отвечает показанному на рис. IX-67. Для обоих элементов известны также комплексы [c.486]

    Подгруппа ванадия (V, N5, Та). Ванадий, ниобий и тантал имеют только одну устойчивую кристаллическую фазу с ОЦК структурой. Свойства жидких ванадия, ниобия и тантала мало изучены. Приведенные в табл. 17 данные показывают, что эти жидкости по своему строению и свойствам, видимо, во многом подобны простым жидкостям подгруппы титана. При плавлении концентрация электронов проводимости почти не меняется, потому что электропроводность остается почти такой же, как в твердой фазе. Концентрация обобществленных электронов Б жидкой фазе должна быть несколько выше, чем у металлов подгруппы титана, так как атомы имеют пять валентных электронов. Соответственно сказанному ранее, температуры плавления и кипения, а также энтропии испарения металлов подгруппы ванадия больше чем у металлов подгруппы титана. Энтропии плавления имеют величины, обычно наблюдаемые при плавлении кристаллов с ОЦК структурой. [c.192]


    Строение электронных оболочек атомов ванадия, ниобия и тантала может быть выражено следующими формулами  [c.264]

    Атомы ванадия, ниобия и тантала имеют характерное для переходных элементов строение их валентные электроны расположены в двух внешних слоях, в периферийном слое— два электрона (у ниобия — один). С предпоследнего слоя в определенных условиях эти элементы отдают еще до трех электронов (ниобий — до четырех). Валентность ванадия, ниобия и тантала в соединениях бывает II, III, IV и V. Валентность V в обычных условиях наиболее стабильна. Электронные формулы элементов подгруппы ванадия  [c.3]

    Сульфиды ванадия, ниобия и тантала. Сопоставление формул и структур сульфидов ванадия, ниобия и тантала с формулами н строением оксидов этих металлов является еще одной иллюстрацией общих положений, отмеченных в начале главы. Например, в системе Nb—S охарактеризовано по крайней мере 9 кристаллических фаз, п ни одна из ннх не имеет [c.521]

    Металлохимия элементов V В-г р у п п ы. Ванадий, ниобий и тантал в любых комбинациях образуют друг с другом непрерывные твердые растворы, что отмечается также в системах, образованных этими металлами с изоструктурными (ОЦК) полиморфными модификациями других переходных металлов, не сильно отличающихся по электронному строению. Так, ванадий образует непрерывные твердые растворы с Титаном, металлами подгруппы хрома, 6-марганцем, а-железом ниобий образует непрерывные растворы в твердом состоянии с / -модификациями всех металлов подгруппы титана, молибденом, вольфрамом и -) ураном тантал ведет себя в этом отношении аналогично ниобию. В тех случаях, когда сочетание металлохимических факторов не благоприятствует полной взаимной растворимости, при взаимодействии с (i-металлами образуются ограниченные твердые растворы с широкими областями гомогенности. [c.431]

    Сходное электронное строение, близость атомных и иоииы.х. радиусов, обусловленная лантаноидным сжатием, приводит к большому сходству Н1юбия и тантала (рис, 3,104), в частио- [c.517]

    На основании этих экспериментальных данных заключают исследованные образцы представляют собой одно и то же твердое вещество, а именно такое-то соединение переменного состава. Нетрудно заметить, что подобное заключение имеет только мнимую связь с экспериментом. На самом же деле оно предопределено представлением о соединениях переменного состава. Действительно, ведь мы заранее предполагаем, что все образцы однотипного состава и строения, обладающие близкими свойствами, являются образцами одного и того же вещества, например карбида тантала, оксидов железа, титана и т. д. Так, если мы можем выразить состав ряда образцов оксида титана формулой ТЮ1,д 2,о и рентгеновское исследование обнаруживает одинаковость их структуры, то даже без исследования свойств данных образцов мы не допускаем сомнений в том, что име м дело с образцами двуокиси титана. Между тем эксперимент в действительности говорит о другом каждый образец исследуемого вещества имеет свой индивидуальный состав, несовпадающее строение и собственные свойства. В вышеуказанных опытах мы устанавливаем отнюдь не идентичность состава, строения и свойств, а сходство, подобие исследуемых образцов. Образцы какого-нибудь вещества представляют индивидуальное химическое соединение только при их полной идентичности. Следовательно, рассматриваемые образцы вовсе не являются образцами одного и того же твердого соединения. Нетрудно заметить, что каждое твердое вещество, которое до настоящего времени считают соединением переменного состава, в действительности является не чем иным, как рядом однотипных соединений постоянного состава, количество которых в каждом ряду чрезвычайно велико, но не бесконечно. [c.170]

    Существенный вклад внесла аналитическая химия в решение такой важной проблемы современной науки, как синтез и изучение свойств трансурановых элементов. Предсказание химических свойств трансурановых элементов оказалось более сложным, чем для элементов, входящих в периодическую систему в ее старых границах, так как не было ясности в распределении новых элементов по группам. Трудности усугублялись и тем, что до синтеза трансурановых элементов торий, протактиний и уран относились соответственно к IV, V и VI группам периодической системы в качестве аналогов гафния, тантала и вольфрама. Неправильное вначале отнесение первого трансуранового элемента № 93 к аналогам рения привело к ошибочным результатам. Химические свойства нептуния (№ 93) и плутония (№ 94) показали их близость не с рением и осмием, а с ураном. Было установлено, что трансурановые элементы являются аналогами лантаноидов, так как у них происходит заполнение электронного 5/- слоя, и, следовательно, строение седьмого и шестого периодов системы Д. И. Менделеева аналогично. Актиноиды с порядковыми номерами 90—103 занимают места под соответствующими лантаноидами с номерами 58—71. Аналогия актиноидов и лантаноидов очень ярко проявилась в ионообменных свойствах. Хроматограммы элюирования трехвалентных актиноидов и лантаноидов были совершенно аналогичны. С помощью ионообменной методики и установленной закономерности были открыты все транс-кюриевые актиноиды. Рекордным считается установление на этой основе химической природы элемента 101 — менделевия, синтезированного в начале в количестве всего 17 атомов. Аналогия в свойствах актиноидов и лантаноидов проявляется также в процессах экстракции, соосаждения и некоторых других. Экстракционные методики, разработанные для выделения лантаноидов, оказались пригодными и для выделения актиноидов. [c.16]


    Ярко выраженная поливалентность актиноидов отражает специфику электронного строения их атомов — близость энергетических состояний 5/-, 6d-, 7s- и 7р-подуровней, большую пространственную протяженность 5/-орбиталей по сравнению с 4/-и меньшую эф( )ективность экранирования внешних электронов. Только по мере заполнения 5/-орбиталей электронные конфигурации атомов несколько стабилизируются и элементы подсемейства берклия (Вк—Lr) проявляют более устойчивые низкие степени окисления +3 и +2. Для тория, протактиния и урана преобладают степени окисления -f4, -f5 и +6 соответственно, поэтому соединения этих элементов до некоторой степени напоминают соединения гафния, тантала и вольфрама. В настоящее время принадлежность их к семейству /-элементов (актиноидов) не вызывает сомнений. U, Np, Pu и Ат образуют группу уранидов, аналогично подгруппе церия в ряду лантаноидов, а элементы Ст—Lr образуют группу кюридов. [c.360]

    Ниобии и тантал образуют очень много сложных по соста-н) II строению кластерных соединений, содержащих в качестве пионов галогенид-ионы, например, ЫЬзС , Та Вг , ЫЬ С , [c.236]

    По строению электронных уровней атомы этих элементов существенно отличаются от атомов элементов VA-группы. Ванадий, ниобий И тантал являются типичными d-элементами, в атомах которых достра- [c.89]

    В V периоде элемент IV группы — цирконий — непосредственно следует за элементом П1 группы —. иттрием, а в VI пер1Иоде между элементом III группы — лантаном — и элементом IV группы — гафнием — вклиии-вается длииный ряд лантанидов. У лантанидов происходит достройка электродами третьего снаружи электронного слоя. С возрастанием за1ряда атомного ядра у них электронные оболочки все более стягиваются к ядру, и радиус атома уменьшается (табл. 13). Из-за этого, и у элементов, следующих за лантанидами, атомные радиусы оказываются относительно малым и близкими к атомным радиусам соответствующих элементов V периода. Сходство строения атомов здесь дополняется близостью. их радиусов. Поэтому и по химическим свойствам элементы цирконий и гаф,ний, ниобий и тантал, молибден и вольфрам и т. д. оказываются попарно чрезвычайно сходными. [c.152]

    Температурная зависимость процесса растворения водорода в металлах определяется знаком теплового эффекта. Для многих металлов (хром, железо, кобальт, никель, медь, серебро, платина, молибден и др.) ДЯ > О и с повышением температуры растворимость растет. Экзотермически поглощают водород (ДЯ < < 0) титан, цирконий, гафний, ванадий, ниобий, тантал, торий, уран и РЗЭ за счет образования металлидных фаз внедрения. В то же время есть металлы, в которых водород практически не растворяется. Это вольфрам, золото, цинк, кадмий, ртуть, индий. Если при растворении водорода кристаллохимическое строение металла не изменяется, в результате возникают твердые растворы внедрения. При растворении значительного количества водорода, как правило, кристаллохимическое строение металла-растворителя претерпевает изменения. Тогда образуются фазы внедрения. [c.295]

    У атома ниобия наблюдается проскок электрона, один электрон с внешнего энергетического уровня пере-кодит на /-подуровень предиоследнего уровня, ио, как видно из приведенных электронных формул, у всех атомов элементов этой подгруппы общее число валентных электронов равно пяти. В соответствии с электронным строением атомов ванадий, ниобий и тантал могут проявлять в соединениях степени окисления от +1 до +5. [c.264]

    Ванадий, ниобий и тантал между собой и с металлами, близко расположенными к ним в периодической системе (подгрупп железа, титана и хрома), образуют металлические твердые растворы. По мере увеличения различий в электронном строении взаимодействующих металлов возможность образования твердых растворов уменьшается, а интерметаллических соединений, например типа СозУ, ГезУ, К1зУ, А12У и др., возрастает. [c.590]

    Если необходимо работать при высокой температуре в окислительной атм10сфере, то нагревательную трубку изготовляют не из вольфрама или тантала, а из иридия [18] или из керамических масс на основе диоксидов циркония или тория, электропроводность которых обеспечивается за счет наличия примесей, делающих кристаллическое строение этих оксидов дефектным [4, 8, 17]. Масса Нернста (ТНОг-ЬСеОг) может быть рекомендована для изготовления электропроводящих трубок только очень небольшого диаметра. Для проведения синтеза макроколичеств веществ такие трубки себя не оправдали. [c.60]

    В двойных сульфатах ниобия и тантала сулъфат-ион, имеющий тетраэдрическое строение в сульфатах с ионной связью центрального атома с 50 , претерпевает значительное отклонение от тетраэдрической конфигурации. Появление запрещенных в ИК-спект-ре частот VI и Уг, а также расщепление вырожденных частот vз и на несколько компонент указывают на координационный характер групп 502- д соединениях. В отличие от оксодисульфатов в них присутствуют островные связи Ме=0, что объясняет повышенную растворимость двойных сульфатов и подтверждает целесообразность ведения технологического процесса с получением таких конечных продуктов. [c.83]

    Как и в комплексах молибдена, основанных на фрагменте МобХа, хлорокомплексы ниобия и тантала могут включать дополнительные лиганды, наиример молекулы воды так, в соединении ТабС1и-7Н20 структурная единица имеет состав 1ТабС112(СЬ) (Н20)4]. Предположения о строении этой частицы [c.119]


Смотреть страницы где упоминается термин Тантал строение: [c.225]    [c.520]    [c.159]    [c.151]    [c.207]    [c.486]    [c.486]    [c.491]    [c.106]    [c.119]    [c.216]    [c.241]    [c.562]    [c.216]   
Основы общей химии Т 1 (1965) -- [ c.468 , c.469 ]

Методы элементоорганической химии Кн 2 (1975) -- [ c.18 , c.429 ]

Основы общей химии том №1 (1965) -- [ c.468 , c.469 ]




ПОИСК





Смотрите так же термины и статьи:

Тантал



© 2024 chem21.info Реклама на сайте