Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Алюминий как легирующий элемент

    МЕДИ СПЛАВЫ — сплавы на основе меди, содержащие олово, цинк, алюминий, никель, железо, марганец, кремний, бериллий, хром, свинец, золото, серебро, фосфор и другие легирующие элементы. Добавки повышают прочность и твердость, стойкость против коррозии, улучшают антифрикционные свойства. М. с. делят на латуни, бронзы и медно-никелевые сплавы. Латуни — М. с., в которых главным легирующим элементом является цинк. Самыми распространенными латунями являются томпак (80  [c.156]


    В отличие от самого алюминия его сплавы характеризуются высокой удельной прочностью, приближающейся к высокопрочным сталям. Основные другие достоинства всех сплавов алюминия — это их малая плотность (2,5—2,8 г/см ), удовлетворительная стойкость против атмосферной коррозии, сравнительная дешевизна и простота получения и обработки. Эти сплавы пластичнее сплавов магния и многих пластмасс, стабильны по свойствам. Основными легирующими элементами являются Си, Mg, 31, Мп, Хп, которые вводят в алюминий главным образом для повышения его прочности. Типичными представителями сплавов алюминия являются дуралюмины, относящиеся к сплавам системы Л1—Си—Mg. Высокопрочные сплавы алюминия относятся к системам Л1—7п—Mg—Си, содержащим добавки Мп, Сг, 2т. Из других сплавов широко известны силумины, в которых основной добавкой служит кремний, магналий (сплав алюминия с 9,5—11,5% магния). Алюминиевые сплавы применяются в ракетной технике, в авиа-, авто-, судо- и приборостроении, изготовлении строительных конструкций, заклепок, посуды и во многих других отраслях промышленности. [c.633]

    Основными легирующими элементами стали являются хром, никель, молибден, вольфрам, ванадий, титан, алюминий, марганец, кремний, бор. Неизбежными примесями в сталях являются марганец, кремний, фосфор, сера. Легирующие элементы, вводимые в углеродистую сталь, изменяют состав, строение, дисперсность и количество структурных составляющих и фаз. Фазами легированной стали могут быть твердые растворы — легированный феррит и аустенит, специальные карбиды и нитриды, интерметаллиды, неметаллические включения — окислы, сульфиды, нитриды. Как правило, за счет легирования повышаются прочностные характеристики стали (пределы прочности и текучести). [c.66]

    Легированные стали маркируют буквами и цифрами. Двузначные цифры в начале марки указывают среднее содержание углерода в сотых долях процента, буквы справа от цифры — легирующие элементы А — азот, Б — ниобий, В — вольфрам, Г — марганец, Д — медь, Е — селен, К — кобальт, М — молибден, Н — никель, П — фосфор, Р — бор, С — кремний, Т — титан, Ф — ванадий, X — хром, Ц — цирконий, Ю — алюминий. Цифры после букв указывают ориентировочное содержание легирующего элемента в целых процентах отсутствие цифры свидетельствует о том, что элемент присутствует в количестве не более 1,5%. [c.328]

    Разрушение печных труб вследствие воздействия на сталь азота. Впервые разрушения печных труб от действия азота на сталь были обнаружены на установках, где создались условия для диссоциации аммиака на водород и азот. Этот процесс протекает при температурах выше 400 °С, а при температурах более 600 С молекулярный азот диссоциирует с образованием активного атомного азота, который диффундирует вглубь стали и вызывает разупрочнение ее структуры. С этим явлением пришлось столкнуться п зи изучении работы ядер-ных реакторов, где отвод тепла осуществляется током чистого азота. Особенно активно реагируют с ним нержавеющие стали, содержащие хром, алюминий, титан и другие легирующие элементы. [c.161]


    В легированных сталях дополнительно определяют никель, хром, ванадии, вольфрам, молибден, алюминий, медь и другие легирующие элементы. При анализах руководствуются стандартами на методы химического анализа металлов и сплавов. [c.204]

    Эффективными легирующими элементами, повышающими стойкость к высокотемпературной коррозии, являются А1, Ве и [g. Например, при 256 °С сплав 2 % Ве — Си при выдержке в течение 1 ч окисляется со скоростью, равной скорости окисления чистой меди [45]. Максимальный эффект от легирования алюминием наблюдается при его содержании 8 % [46]. [c.202]

    Сопротивление окислению жаростойких сплавов ири высоких температурах, как было указано ранее, обусловлено образованием иа иоверхности металла защитной хорошо сцепленной с ним окисной пленки. Существует большое количество легированных стале( 1, обладающих высокой жаростойкостью в сочетании с жароирочностью при нагреве до 1200° С и выше. Осиов-иы.ми легирующими. элементами, иридаюиичми жаростойкость келезным сплавам, являются хром, кремний, алюминий, никель н некоторые другие, добавка которых обусловливается характером и составом газовой среды, необходимостью улучшения меха1 ических н других свойств силава (см. гл. X). [c.234]

    Новые стали и сплавы для печных труб. В основу разработки новых сталей и сплавов для печных труб высокотемпературных печей заложена сопротивляемость материала науглероживанию, которая зависит от соотношения никеля к хрому в марке сплава и наличия легирующих элементов ниобия, вольфрама, алюминия, титана, кремния и редкоземельных металлов. [c.38]

    Для увеличения стойкости стали и чугуна против обезуглероживания в них добавляют небольшое количество алюминия, хрома, вольфрама или марганца. Легирующие элементы способствуют замедлению диффузии углерода из стали и образуют на поверхности металла плотные окисные пленки, замедляющие процесс окисления. Для уменьшения окисления и обезуглероживания при нагреве металл можно помещать в защитную атмосферу из нейтрального газа. [c.26]

    В обозначении марок первые две цифры соответствуют среднему содержанию углерода в сотых долях процента буквы за цифрами означают Р — бор, Ю —алюминий, С — кремний, Т —титан, Ф —ванадий, X —хром, Г —марганец, Н —никель, М — молибден, В — вольфрам цифры, стоящие после букв, указывают примерное содержание легирующего элемента в целых единицах (отсутствие цифры означает, что в марке содержится до 11,5% этого легирующего элемента). Буква А в конце марки означает высококачественную сталь. Особовысококачественная [c.219]

    Деформируемые алюминиевые сплавы, упрочняемые термической обработкой, легируются элементами, обладающими ограниченной растворимостью в алюминии в твердом состоянии, уменьшающейся при понижении температуры. Термическая обработка деформируемых алюминиевых сплавов заключается в закалке с последующим старением. Старение может быть естественным при комнатной температуре или искусственным при 150— 200°С. Закалка проводится нагревом до температуры, обеспечивающей полное растворение легирующего элемента и образование однородного твердого раствора с последующим охлаждением в воде. В результате закалки фиксируется при комнатной температуре пересыщенный твердый раствор, однако прочность сплава непосредственно после закалки остается низкой. В результате старения закаленного сплава при комнатной или [c.47]

    Используемые в технике сплавы содержат больше двух компонентов. В состав большинства марок стали входят наряду с железом и углеродом так называемые легирующие элементы — Мп, Сг, N1, 5 и др. Несколько элементов обычно входит в состав сплавов на основе меди, олова, алюминия и многих других цветных металлов. Для описания фазовых равновесий в реальных сплавах во многих случаях достаточно знания диаграмм состояния для систем, состоящих из трех основных компонентов, например, для нержавеющих сталей из железа, хрома и никеля. [c.180]

    В качестве основного легирующего элемента а-спла-вов служит алюминий, образующий твердые растворы замещения на основе а-модификации титана. Сплавы с а-структурой обладают средними показателями прочности и пластичности и не упрочняются термической обработкой. Они отличаются высокой жаропрочностью, которая повышается с увеличением степени легирования. Особенно ценные качества их — отличная свариваемость и высокая термическая стабильность, т. е. отсутствие охрупчивания при длительном совместном воздействии высоких температур и напряжений. Например, двойные сплавы Т1—А1, содержащие до 6% А1, не охруп-чиваются при нагревании до 400—500 °С. [c.67]

    В отличие от других материалов для алюминия характерно широкое применение для защиты от коррозии оксидных пленок, получаемых на поверхности изделий химическими или электрохимическими методами. Получаемые оксидные пленки обладают высокими адгезионными свойствами, являясь хорошей основой для лакокрасочных покрытий. При введении в растворы для анодирования специальных добавок удается получить широкую гамму декоративных покрытий. Литейные алюминиевые сплавы имеют ряд положительных технологических свойств, позволяющих получать отливки сложной формы, Основные легирующие элементы литейных алюминиевых сплавов можно разделить на три группы  [c.75]


    Коррозионное поведение алюминия и его сплавов зависит от условий эксплуатации — природы составляющих агрессивной среды, их концентрации, температуры, перемещения среды и др. Большое значение для коррозионной устойчивости имеет также чистота алюминия, вид и количество легирующих элементов в его сплавах, вид термообработки и пластической деформации, состояние поверхности и др. [c.124]

    Для применения в атмосферных условиях рекомендуются стали, в состав которых входит не менее 0,3% меди. Положительное влияние меди еще больше усиливается при дополнительном легировании другими добавками, такими, как никель, хром, алюминий, кремний, фосфор, при общем содержании легирующих элементов не менее 1,5 %. Эти элементы усиливают склонность стали к пассивированию, а фосфор, переходя в пленку продуктов коррозии, дополнительно усиливает ее защитные свойства, образуя фосфатные соединения. [c.11]

    Легирование стали существенно влияет на толщину переходной зоны карбидообразующие элементы способствуют ее уменьшению, а некарбидообразующие — либо ее не изменяют (никель, алюминий), либо увеличивают (кремний, медь при содержании 0,657о ) При борировании в порошках целесообразно применение сталей, содержащих 1—3% легирующих элементов. [c.42]

    Большое значение имеет также содержание легирующих элементов. Установлено, что никель, алюминий и медь несколько снижают твердость борированного слоя, а хром, марганец, вольфрам [c.46]

    Для повышения сопротивления КР малоуглеродистые стали легируют элементами, связывающими углерод и азот в соединения, нерастворимые в феррите и аустените. К таким элементам относится титан, введение которого весьма заметно увеличивает стойкость к КР. Легирование сталей хромом, молибденом, алюминием, марганцем и ванадием тоже повышает сопротивление КР. Увеличение содержания фосфора снижает стойкость мягких сталей к КР. [c.69]

    Коррозия в атмосфере, содержащей водяной пар, двуокись серы, сероводород и др. Подробно изучены условия равновесия, восстановления и окисления железа в смеси водород—водяной пар в зависимости от температуры. Равновесие сильно смещается в присутствии легирующих элементов, например хрома и алюминия при определенных условиях водяной пар обладает более сильным окислительным действием, чем воздух или двуокись углерода. [c.85]

    Технический алюминий имеет степень чистоты порядка 99,0—99,8%, а алюминий высокой степени чистоты 99,9%. Коррозионная устойчивость алюминия обычно растет с повышением степени его чистоты. Однако в некоторых случаях коррозионную устойчивость алюминия можно повысить с помощью легирующих элементов. Так, например, магний благоприятно влияет на его коррозионное поведение в средах, содержащих ионы хлора. Такое же благоприятное действие оказывает марганец, который одновременно уменьшает влияние железа как вредной примеси. [c.132]

    Если структура алюминия и его сплавов гетерогенна, то в этом случае примеси могут образовывать гальванические элементы. Соответствующая термообработка гомогенизирует структуру и уменьшает вредное влияние легирующих элементов, особенно железа и меди. [c.132]

    Впервые болгарские специалисты на основе алюминия и легирующих элементов разработали весьма устойчивое защитное покрытие, предотвращающее в значительной мере угар электродов [25], которое можно применять при температурах выше 1750 °С. В результате обработки электрической дугой последовательно нанесенных на электрод слоев расплавленного и порошкообразного алюминия и легирующих элементов достигается высокая адгезия покрытия толщиной 0,5—0,8 мм. Гомогенизироваиный слой электродного покрытия содержит около 75% алюминия. При температурах выше 600°С покрытие находится в расплавленном состоянии, но не стекает с поверхности, обеспечивая хорошую сцеиляе-мость с поверхностью графитированного электрода и газо([)обиость его поверхности. [c.98]

    Основным легирующим элементом бoJ ъшин твa легированных сталей является хром. К коррозиошостойким относятся такие стали и сплавы, содержание хрома в которых составляет не менее 12%. Кроме того, в зависимости от назначения хромистых сталей их дополнительно легируют никелем, молибде- ном, кремнием, медью, алюминием, титаном, ниобием, азотом, и некоторыми другими элементами. [c.12]

    Легированные стали маркируют набором цифр и букв. Буква обозначает легирующий элемент (В — вольфрам, Н — никель, X — хром, М — молибден, К — кобальт, Г — марганец, С — кремний, Ю — алюминий, Т титан), цифра перед буквой — содержание углерода в сотых долях процента, цифра после буквы —содержание легирующего элемента, превыщающее 1% в целых процентах. Например, сталь марки 30X13 содержит 0,3% углерода и 13% хрома, сталь 20ХН2Т — 0,2% углерода, 2% никеля, а также хром и титан в количествах менее 1%. [c.47]

    В настоящее время разработано довольно большое число сплавов титана. Все легирующие элементы по влиянию на полиморфизм титана можно разбить на три группы. Первая группа — представлена элементами, повышающими стабильность а-фазы, К числу таких элементов относится алюыииий, Па рис, 73 показаны диаграммы состояния системы титан — алюминий. [c.192]

    Необходимо также отметить существование четвертого класса— дисперсионно-твердеющих нержавеющих сталей, которые приобретают высокую прочность и твердость в результате низкотемпературной термообработки, проводимой после закалки с вы--сокой температуры. Эти сплавы Сг—Ре содержат меньше никеля, чем это требуется для стабилизации аустенитной фазы (или вообще его не содержат). Зато они содержат такие легирующие элементы, как алюминий или медь, которые обеспечивают высокую твердость, приводя к образованию и выделению интерметаллических соединений вдоль плоскостей скольжения или границ зерен. Эти стали применяют в тех же случаях, что и коррозионностойкие никеле- [c.297]

    С. Мухина, Е. И. Никитина, Л. М. Буданова, Р. С. Володарская, Л. Я. Поляк, А. А. Тихонова. Методы анализа металлов и сплавов. Обороигиз, 1959, (528 стр,), 15 книге рассмотрены методы анализа сталей, чугунов, жаропрочных сплавов, ферросплавов и н1лаков, а также сплавов на основе алюминия, магния и меди. Приведены методики определения большого количества легирующих элементов в этих материалах. Вводная глава содержит характеристику физико-химических методов анализа. [c.491]

    В составе малоуглеродистой стали обычно присутствуют углерод, марганец, кремний, сера, фосфор, кислород, азот, водород, а также могут быть добавки легирующих элементов, используемых в качестве раскислителей хром, алюминий, бор, ванадий, титан, молибден. Содержание каждого из указанных элементов в малоуглеродистой стали составляет десятые либо сотые доли процента. Между тем, их влияние на склонностъ стали к хрупкости при понижении температуры может оказаться значительным, хотя удельный вес влияния каждого элемента определить весьма трудно. Поэтому исследователи рассматривают свойства чистых сплавов а-желе-за с регулируемыми добавками различных элементов [48], а промышленные стали оценивают с применением методов статистического анализа [49]. [c.39]

    Особенность строения этого соединения, обладающего ромбической симметрией, - наличие шестичленного кольца А1815 018, составленного из шести кремневокислородных радикалов 810з. Кольцеобразная структура конгломерата этих радикалов, связанных ионной связью с железом и алюминием, обеспечивает высокую и стабильную адгезию. Кроме того, это соединение, относящееся к классу силикатов, обладает значительной стабильностью свойств и препятствует образованию интерметаллида, замедляя дальнейшую диффузию алюминия в стальную поверхность при получении покрытия и водорода при наводороживании в сероводородсодержащей среде. Легирование алюминиевого покрытия кремнием позволило снизить толщину наносимого слоя для обеспечения защиты в наводороживающих сероводородсодержащих средах по сравнению с покрытием без легирующих элементов. [c.66]

    Протекторы обычно изготовляют не из чистых металлов, а из сплавов. Некоторые легирующие компоненты предназначаются для получения мелкозернистой структуры, что способствует более равномерной поверхностной коррозии. Другие легирующие элементы вводятся для уменьшения собственной коррозии протектора и тем самым для увеличения его токоотдачи. И наконец, некоторые легирующие элементы могут также уменьшать или предотвращать склонность к образованию поверхностного слоя или пассивации. Без таких активаторов алюминий был бы непригодным как материал для протекторов. [c.175]

    Межкристаллитная коррозия алюминия и его сплавов может распространяться локально на отдельных участках в местах концентрации напряжений. Причиной этого вида коррозии является отложение легирующих элементов по границам зерен. В алюминиевомедных сплавах межкристаллитная коррозия объясняется растворением обедненных медью границ металлов. Склонность алюминиевых сплавов к межкристаллитной коррозии зависит как от состава сплава, так и от термообработки или деформации. Алюминиевые сплавы, легированные магнием, не склонны к межкристаллитной коррозии. Алюминий высокой чистоты не подвергается межкристаллитной коррозии в соляной кислоте. [c.123]

    Стандартный потенциал алюминия равен —1,66 В. На его поверхности при доступе воздуха образуется довольно плотная окисная пленка толщиной порядка 0,1 мкм с хорошими защитными свойствами. Она состоит в основном из окиси алюминия в аморфном или кристаллическом состоянии и из гидроокиси алюминия. Поскольку окисные пленки, образующиеся на алюминиевых сплавах, включают еще и окиси легирующих элементов, они менее плотные, чем на чистом алюминии. Однако в некоторых случаях (напрнмер, А1 — Mg- плaвы в морской воде) это приводит к повышению коррозионной устойчивости. [c.132]


Смотреть страницы где упоминается термин Алюминий как легирующий элемент: [c.452]    [c.205]    [c.349]    [c.358]    [c.527]    [c.156]    [c.375]    [c.8]    [c.43]    [c.46]    [c.50]    [c.73]    [c.291]   
Химическое оборудование в коррозийно-стойком исполнении (1970) -- [ c.95 ]




ПОИСК





Смотрите так же термины и статьи:

Алюминий—элемент

Влияние различных легирующих элементов на процесс анодного окисления алюминия и свойства анодных пленок

Элементы легирующие



© 2025 chem21.info Реклама на сайте