Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Газофазная полимеризация

    При газофазной полимеризации формальдегида под действием хлористого водорода первичные активные центры образуются в результате взаимодействия формальдегида и НС1 в соотношении 1 1. Обрыв происходит при взаимодействии активных центров с молекулой мономера. При полимеризации происходит реакция разветвления цепи, основанная на ее расщеплении на две активные цепи за счет взаимодействия с молекулой H I. Выведите кинетические уравнения инициирования, обрыва, разветвления (Лр в) и роста. [c.132]


    Р. п. может быть осуществлена в массе, эмульсии, суспензии, р-ре и др. средах (см., напр.. Блочная полимеризация, Полимеризация в растворе. Эмульсионная полимеризация. Суспензионная полимеризация, Газофазная полимеризация). [c.158]

    Результаты исследований микроструктуры полимера, проведенных с помощью ртутной порометрии, показали, что прн газофазной полимеризации этилена происходит уплотнение полимерной частицы об этом свидетельствует повышение насыпной плотности (в 3 раза) и соответственно уменьшение пористости (суммарного объема пор) и удельной поверхности пор в полимере (табл. 2.2). [c.80]

    Расчеты для теплоты реакции лучше согласуются с рассматриваемой концепцией, чем для изменения энергии Гиббса. Это связывают с тем, что изменения энтропии не столь постоянны при присоединении мономерных единиц, как изменения теплот. Однако можно для достаточно хороших оценок термодинамических характеристик газофазной полимеризации использовать соотношения [c.252]

    Этилен можно полимеризовать в растворе углеводорода или в состоянии сжатого газа. Когда используются хорошо растворяющий полиэтилен углеводород и достаточно высокие температуры, полиэтилен остается в растворе (полимеризация в растворе). При использовании плохого растворителя и довольно низких температур полиэтилен получается в виде гранул, ядром которых служит катализатор (суспензионная полимеризация). При газофазной полимеризации полимер также образуется в виде гранул. [c.166]

    Среди технических методов осуществления реакций цепной полимеризации следует указать газофазную полимеризацию, полимеризацию в массе жидкого или твердого мономера, полимеризацию мономера в растворе, эмульсии или суспензии. Ступенчатые реакции синтеза полимеров обычно осуществляют в расплаве мо- [c.80]

    Получают полимер газофазной полимеризацией в трехзонных камерах. В первой зоне (зона сублимации) кристаллический ди- -ксилилен нагревают, чтобы перевести в парообразное состояние. Затем пары димера во второй зоне при 540° С расщепляют, чтобы получить мономерный п-ксилилен по схеме  [c.121]

    С целью проверки сделанного предположения была исследована зависимость прочности комбинированного волокна, полученного радиационной газофазной полимеризацией акрилонитрила на вытянутом полиэтиленовом волокне, от температуры в условиях предварительного нагревания привитого волокна до температуры, намного превышающей температуру плавления полиэтилена, и последующего его охлаждения до комнатной температуры. Результаты этого исследования приведены на рис. 5. Его рассмотрение показывает, что по мере нагревания образна его прочность падает, но не до нулевого значения, как это имеет место при достижении температуры плавления полиэтилена в случае контрольного образца, а до некоторого значения, отвечающего прочности привитого слоя, — в соответствии с приведенными выше данными термомеханического исследования. При достижении температуры крн- [c.548]


    Полимеризация в растворе Суспензионная полимеризация Газофазная полимеризация Итого [c.12]

    Усовершенствование однокомпонентных катализаторов позволило исследователям фирмы Юнион Карбайд (США) разработать новые хроморганические катализаторы [123], которые оказались весьма эффективными для газофазной полимеризации и послужили основой развития газофазных процессов. [c.131]

    СД процессы протекают также при газофазной полимеризации, химических транспортных реакциях, химическом осаждении из газовой фазы. При описании этих и иных процессов, сопровождающихся хим. превращениями, в литературе иногда используют термины хим. возгонка и хим, десублимация . [c.451]

    Газофазную полимеризацию пропилена проводят в реакторе с кипящим слоем, в который вводят катализатор в виде суспензии в углеводороде. Нередко катализатор наносят на инертный носитель -полипропилен. Давление и температура в реакторе близки к давлению и температуре, используемым при полимеризации в массе. [c.859]

    Газофазная полимеризация — способ полимеризации, когда исходный мономер находится в газовой фазе, а целевой продукт образует твердую дисперсную или жидкую фазу. [c.69]

    Полимеризация в газообразном состоянии (газофазная полимеризация) является разновидностью гетерофазной полимеризации, так как высокомолекулярные соединения, возникающие с самого начала процесса, практически нелетучи и реакция, начавшись [c.256]

    Следовательно, в результате радиационной привитой газофазной полимеризации могут быть получены двухслойные волокна, оба слоя ко- [c.545]

    Применялись также для инициирования газофазной полимеризации. В простых растворах этих катализаторов в инертных растворителях первичные свободные радикалы, образовавшиеся из катализатора, могут рекомбинировать либо взаимодействовать с исходной молекулой, либо реагировать вместе, давая более стабильные продукты. Энергия активации разложения во многих случаях, по-видимому, составляет около 30 ктл/моль и эти инициаторы активны (см. разд. 6 В гл. IX) при температурах от комнатной до 100°. Заместители типа — ОСНз, вероятно, ускоряют разложение перекисей, а—СН или — N02 приводят к замедлению скорости. Порядок разложения часто превышает единицу, возможно, вследствие вторичного разложения, претерпеваемого первичными радикалами. В некоторых растворителях радикалы могут предпочтительно реагировать с растворителем это обычно приводит к образованию других радикалов, более или менее активных, по сравнению с первичными радикалами. По-видимому, азосоединения менее склонны ко вторичным реакциям, чем перекиси, особенно в присутствии мономера, и их использование в качестве катализаторов возросло. [c.399]

    Отличительной особенностью газофазного процесса является высокая эффективность каталитической системы А1(С2Н5)з—Ti U- Так, при давлении 0,13 МПа выход ПЭ в случае газофазной полимеризации достигает [c.77]

    Газофазная полимеризация — это реакция, протекающая обычно по сложному механизму — либо по молекулярному, либо с участием свободных радикалов. Рассмотрим кинетические особенности реакций этих двух типов. Реакции полимеризации, протекающие по ионному механизму, будут обсуждены во второй главе второй части. [c.203]

    Этот случай обнаруживается при газофазной полимеризации стирола. [c.208]

    Температура в пределах 10—130° и поверхность носителя катализатора не влияют па общий выход полимера и на соотношение отдельных фракций. Однако газофазную полимеризацию целесообразно проводить при 5°, чтобы катализатор лучше удерживался на носителе. [c.168]

    Жидкофазная и газофазная полимеризация. Процесс жидкофазной полимеризации бутадиена под влиянием металлического натрия явился первым промышленным способом получения СК в СССР. В дальнейшем для получения этого каучука (СКБ), а также его аналогов, синтезируемых в присутствии калия (СКВ) и лития (СКБМ), был разработан способ полимеризации в газовой фазе. Технологическое оформление этих процессов достаточно подробно описано в ряде книг [55—57]. Поскольку получение [c.183]

    Применение газофазного метода производства ПЭНД способствует упрощению технологической схемы, более рациональному использованию реагентов, сокращению расходных коэффициентов, резкому снижению объема сточных вод производства. Исключение растворителя при газофазной полимеризации этилена усложняет теп лосъем реакции. Однако при проведении процесса под давлением не ниже 1 МПа сам этилен является хорошим теплоотводящим агентом при условии его циркуляции через выносные холодильники. Добавка водорода в качестве регулятора молекулярной массы полимера значительно улучшает условия теплосъема. Поэтому трудности реализации газофазного метода в промышленности связаны главным образом с необходимостью поддержа ния образующегося полимера в состоянии устойчивого кипящего слоя, а также с возможной забивкой порошком циркуляционного контура. [c.84]

    Высокоэффективные хроморгаЕгические катализаторы были предназначены прежде всего для газофазного процесса. Однако основные закономерности процесса полимеризации этилена были изучены и при проведении реакции в среде растворителя. Они оказались идентичными закономерностям газофазной полимеризации этилена. [c.110]

    Тем не менее, очевидно, что суспензионные процессы отличаются повышенными расходными коэффициентами по пару и охлаждающей воде, значительно уступая по этим показателям процессам растворной и газофазной полимеризации. Исключение составляют процессы фирм Сольвей и Филлипо, в которых расход охлаждающей воды приближается к таковому в растворных процессах. Расход электроэнергии в суспензионных процессах в 4,5—5 раз ниже, чем в производстве ПЭВД. Следует учитывать, что на энергозатратах наряду с технологией существенно сказывается и аппаратурное оформление узла полимеризации. В этом отнощении особого внимания заслуживает петлевой реактор для полимеризации этилена, используемый фирмами Сольвей и Филлипс , который позволяет обеспечить теплосъем через рубашку при мощности линии 70 тыс. т/год в одном реакторе. [c.132]


    Объем реактора для процесса при заданной производительности определяется активностью катализатора, режимом проведения процесса, выбранной конструкцией реактора и возможностями теплосъема. Чем активнее катализатор, тем меньщее время контакта требуется для обеспечения заданного выхода полимера на единицу массы катализатора. Так, гомогенные ванадиевые катализаторы при проведении полимеризации в суспензионном режиме и катализаторы типа используемых фирмой- DSM (Голландия) в растворном режиме обеспечивают возможность работы при наименьшем времени контакта (15—30 мин, давление около 4 М,Па). Гетерогенные каг тализаторы на носителях, применяемые при суспензионной или газофазной полимеризации этилена, требуют более длительного времени контакта (1—2 ч и более при давлении 1,5 МПа). Такое увеличение времени контакта требует соответствующего увеличения объема реактора. [c.135]

    Катализаторы с услол<ненными комплексами могут послужить основой и для весьма эффективных однокомпонентных каталитических систем растворной и газофазной полимеризации этилена. Так, активность гомо-) генных катализаторов на основе соединений ванадия усложненной структуры (с лигандами хелатного типа) 1 в 1,5—3 раза выше акливности каталитического ком- плекса на основе триэтнлванадата. 1 [c.186]

    В последние годы на ряде фирм ведутся интенсивные работы по созданию унифицированного процесса производства ПЭ как высокой, так и низкой плотности. Фирмы Юнион Карбайд , Дюпон , Дау Кемикл j (США) сообщают о разработке процессов, позволяющих получать при умеренных давлениях и температурах в присутствии особых комплексных катализаторов ПЭ ] низкой плотности. Фирма Юнион Карбайд разрабо-. ] тала такие катализаторы для газофазной полимеризации i этилена, а Дау Кемикл — для растворного и суспен- I знойного процессов. Фирма DF hemie (Франция) j сообщила о начале промышленного выпуска ПЭ высо- кой плотности в трубчатом реакторе установки ПЭВД 1 с использованием металлорганических комплексных ка- тализаторов. Однако нн один нз перечисленных новых способов получения ПЭ не может претендовать на уни- [c.190]

    ГАЗОФАЗНАЯ ПОЛИМЕРИЗАЦИЯ, способ проведения полимеризации, при к-ром мономер находится в газовой фазе, а продукт р-цни образует твердую дисперсную или жидкую фазу. Скорость Г. п, зависит от скорости диффузии мономера из газовой фазы в зону р-ции и к активным центрам роста цепи в конденсиров. фазе от р-римости и сорбции мономера полимерной фазой от уд. пов-сти частиц катализатора, нанесенных на твердый сорбент при гетерог. полимеризации. В зависимости от способа инициирования рост цепей может происходить в газовой фазе с послед, агрегацией образовавшихся макромолекул нли в частицах полимера. Для мн. систем найдено отрицат. зиачение эффективной энергии активации полимеризации, что обусловлено уменьшением концентрации мономера, адсорбированного полимерными частицами или растворенного в них, с повышением т-ры. Отсутствие р-рителя приводит к снижению роли передачи цепи и росту средней мол. массы полимера. Теплообмен в Г. п. определяется теплопередачей от твердых частиц полимера к газу и зависит от отношения пов-сти частиц к их объему. [c.473]

    В промч ти К.-и. п. осуществляют как крупнотоннажные непрерывные процессы. Полимеризацию чаще всего проводят в среде орг. р-рителя (см. Полимеризация в растворе), реже-методом газофазной полимеризации. В связи с высокой чувствительностью металлоорг. катализаторов к каталитич. ядам требуется высокая степень очистки мономеров и р-рителей от следов О2, Н2О и др. В промч ти К.-и. п. производят ок. /з общего кол-ва полиэтилена (полиэтилен высокой плотности и т. наз. линейный полиэтилен низкой плотности, т.е. сополимер этилена с небольшим кол-вом а-бутена), полипропилен, этилен-пропиленовые каучуки, высшие полиолефины, 1/ис-1,4-полиизопрен и 1/ис-1,4-полибутадиен (см. Изопреновые каучуки синтетические, Бутадиеновые каучуки). Суммарное мировое произ-во полимеров методами К.-и. п. измеряется многими млн. т. [c.465]

    П. может быть осуществлена разл. способами, различающимися по агрегатному состоянию системы. Наиб, распространены блочная полимеризация мономера, полимеризация в растворе, П. в водных дисперсиях (эмульсионная или суспензионная полимеризация), П. газообразного мономера под действием ионизирующего излучения или на пов-сти твердых катализаторов (газофазная полимеризация), а также твердофазная полимеризация (П. твердого мономера под действием ионизир. излучения или света). Известна полимеризация на наполнителях. [c.637]

    Прививку полимера к пов-сти наполнителя можно осуществить разл. способами. Эффективность прививки определяют после длит, обработки продукта р-рителем по доле нерастворимого полимера, связанного с наполнителем. Наиб, изучена радикальная прививка. Так, привитые полимеры образуются при измельчении минер, наполнителей в присут. жидких или газообразных мономеров, напр, стирола, метилметакрилата (кол-во привитого полимера обычно 1-2% по массе), а также при радиац. обработке смеси наполнителя (напр., целлюлозы) с мономером (образуется также нек-рое кол-во гомополимера). Прививкой к пов-сти наполнителя в-в (в т. ч. инициаторов), содержащих функц. группы, осуществляют фиксацию на частицах наполнителя активных центров, используемых в дальнейшем для получения наполненных полимеров заданного состава. Подобным способом получены наполненные материалы на основе, напр., полистирола, поливинилхлорида, политетрафторэтилена. В случае прививки к минер, наполнителям полиолефинов используют способность катализатора Циглера-Натты, а также катализатора на основе Сг или Zr взаимодействовать с группами ОН, имеющимися на пов-сти таких наполнителей. Сначала наполнитель подвергают термообработке с целью удаления нежелат. примесей, затем обрабатывают катализатором, после чего проводят жидко-или газофазную полимеризацию олефинов. Полученные в этом процессе наполненные материалы обладают необычным комплексом св-в. Напр., высокомол. полиэтилен, содержащий 50-60% по массе минер, наполнителя, обладает высокими износостойкостью и ударной вязкостью, к-рые невозможно достигнуть при мех. смешении полимера с наполнителем фафито- и саженаполненный полипропилен имеет необычно высокую электропроводность. Методом П. на н. можно получить структуры, в к-рых частицы наполнителя окружены равномерными слоями полимеров и сополимеров разл. типа. Особенно перспективен этот метод для получения сверхвысоконаполненных материалов с равномерным распределением наполнителя в матрице полимера. [c.638]

    Газофазную полимеризацию Э. проводят при 90-100 °С и давлении 2 МПа (кат.-хромсодержащее соед. на силикагеле). В ниж. части реактор имеет перфорир. решетку для равномерного распределения подаваемого Э. с целью создания кипящего слоя, в верхней - расширенную зону, предназначенную для снижения скорости газа и улавливания осн. массы частиц образовавшегося П. [c.45]

    Разными исследователями [21] было найдено, что результаты кинетических экспериментов зависят от размеров и формы реакционного сосуда, а также от материала и способа обработки его стенок. Эти факты, как известно, являются общепринятым признаком цепного характера реакции. Относительно электронного механизма газофазной полимеризации нет единого мнения. С одной стороны, ускорение реакции под влиянием ионизирующего излучения позволяет предположить свободнорадикальный механизм. Однако инертность обычных радикальных инициаторов и высокая каталитическая активность кислот, щелочей и воды позволяют говорить об ионном механизме. Реакция является равновесной, причем мономер и полимер сосуществуют в довольно широком диапазоне температур. Прямые измерения давления паров мономера над полимером (полиоксиметиленгидрат (СНаО) - Н2О с п поряда 100) показали, что зависимость этой величины От обратной температуры носит линейный характер (рис. 3). Это позволило вычислить теплоту сублимации твердого полимера Ь, которая оказалась равной 56,6+6,3 кДж. С увеличением молекулярной массы полиоксиметилена эта величина несколько возрастает р(са О)п уменьшается). Так, для а-полиоксиметилена Ь = = 68,1 кДж. [c.14]

    Метод вращающегося сектора. Принцип определения констант скоростей радикальных реакций при использовании перемежающегося освещения для инициирования реакции известен с 1926 г. Название метода связано с тем, что для периодического прерывания света обычно используется вращающийся диск с вырезом в виде сектора. Первую попытку применить этот метод к реакциям полимеризации сделал Мелвил [13] в 1937 г. при исследовании газофазной полимеризации метилметакрилата. Хотя эта попытка и не принесла полного успеха, впоследствии было показано, что метод вращающегося сектора очень эффективен при изучении жидкофазной полимеризации начиная с 1945 г., когда этот метод был применен для изучения полимеризации жидкого винилацетата [14, 15], он используется значительно шире, чем любые другие методы, для получения индивидуальных значений констант скоростей для различных мономеров. Кроме того, этот метод является единственным методом, который можно непосредственно применить для определения индивидуальных констант скоростей при реакциях сополимеризации [16]. [c.57]

    Другие изоолефины, например изоамилен, легко нолимеризуются Е присутствии BFg [136—138]. Изоамилен в присутствии этилэфирата фтористого бора полимеризуется при 10—130° с образованием полимеров (выход в жидкой фазе 80%, выход в газовой фазе 90%), которые на 80% состоят II3 децилона, выкипающего в пределах 148—156° и имеющего октановое число 85 [96]. Количество катализатора для жидкофазпой полимеризации в этом случае составляет 1—2%, а для газофазной полимеризации, которая проводилась с катализатором, нанесенным на активированный уголь, и того меньше. [c.171]


Смотреть страницы где упоминается термин Газофазная полимеризация: [c.271]    [c.204]    [c.204]    [c.205]    [c.205]    [c.75]    [c.150]    [c.121]    [c.454]    [c.193]    [c.304]   
Смотреть главы в:

Катализ в промышленности Том 1 -> Газофазная полимеризация

Полимеризация на комплексных металлоорганических катализаторах -> Газофазная полимеризация

Химия и технология синтетического каучука -> Газофазная полимеризация


Физикохимия полимеров (1968) -- [ c.46 ]

Физикохимия полимеров Издание второе (1966) -- [ c.46 ]

Физикохимия полимеров (1968) -- [ c.46 ]

Энциклопедия полимеров Том 2 (1974) -- [ c.0 ]

Энциклопедия полимеров Том 3 (1977) -- [ c.2 ]

Энциклопедия полимеров Том 1 (1974) -- [ c.592 ]

Энциклопедия полимеров Том 2 (1974) -- [ c.0 ]

Энциклопедия полимеров Том 3 (1977) -- [ c.2 ]

Основы технологии синтеза каучуков Изд3 (1972) -- [ c.253 ]

Химия синтетических полимеров Издание 3 (1971) -- [ c.144 ]

Химия сантехнических полимеров Издание 2 (1964) -- [ c.153 ]




ПОИСК







© 2024 chem21.info Реклама на сайте