Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Рибосомные белки, молекулярные

    Рибосомальные РНК составляют примерно 657о сухого веса рибосом, белки — 35%. Эти РНК разделяются на 3 класса 23—28 S, м. м. 1 10" 1G—18 S, м. м. < 1 10, и низкомолекулярные РНК—5S, м. м. 40000. Вероятно, молекулы белка взаимодействуют с неспирализованными участками рРНК, рибонук-леопротеидный комплекс сворачивается в компактную структуру рибосомной субъединицы. Б 70 S-рибосоме содержится примерно 65 полипептидных цепей со средней молекулярной массой 65 000. Б 30 S-частицах имеется 19—20 сортов белков, в 50 S-частицах их более 50. [c.272]


    Однако из всей совокупности данных, изложенных выше, уже сейчас можно пытаться строить приблизительные модели взаимного расположения белков и РНК, в той или иной мере отражающие четвертичную структуру рибосомных частиц с грубым разрешением. Это особенно верно для рибосомной 30S субчастицы, в отношении которой существует гораздо больше сведений (и которая в то же время вдвое меньше), чем о 50S субчастице. Одна из таких грубых моделей размещения 21 рибосомных белков, аппроксимированных сферами с диаметром, соответствующим их молекулярным массам, на Y-образной РНК, форма которой выведена из электронной микроскопии, дана на рис. 72. [c.116]

    В настоящее время показано, что фосфорилирование eIF-2 оказывает эффект на способность фактора взаимодействовать со специальным крупным белком (молекулярная масса около 300000 дальтон), относимым теперь к факторам инициации и обозначаемым как eIF-2B (он же — анти-НС1). Согласно последней принятой схеме (рис. 124), eIF-2 GDP, освобождаемый из рибосомного инициаторного комплекса на стадии присоединения 60S субчастицы, взаимодействует с eIF-2B (на схеме внизу). В таком eIF-2B eIF-2 комплексе ГДФ, связанный с eIF-2, [c.260]

    В рибосомах содержится около 80% всей РНК клетки. Содержание РНК в рибосомах варьирует от 40 до 65%, остальное приходится на долю белка. Рибосомная РНК обладает высоким молекулярным весом (стр. 54) в рибосомных частицах она находится, по-видимому, в виде одной-единственной молекулы. В отличие от этого рибосомные белки гетерогенны. [c.134]

    Молекулярную основу этого различия следует искать в аминокислотном составе рибосомных белков у обычных и галофильных микроорганизмов. У обычных организмов, как прокариотов, так и эукариотов, белки рибосом носят выраженный основной характер. Напротив, рибосомные белки галофильных [c.126]

    В работах [1500, 1501] приведены таблицы молекулярных масс 50 рибосомных белков и указаны некоторые другие их свойства. Молекулярные массы рибосомных белков лежат в диапазоне 10 000—30 000 исключением являются только два белка — S1-белок с мол. массой 65 000 и ЬЗЗ-белок с мол. массой 9 000. 13 S-белков из 21 и 12 L-белков из 34 обладают ярко выраженными основными свойствами, но, очевидно, не все они непосредственно связаны с РНК. Малая субчастица каждой рибосомы содержит по одной молекуле каждого белка то же самое, видимо, справедливо для большинства белков большой субчастицы, за исключением белков L7 и L12. Эти два белка почти идентичны и отличаются друг от друга только тем, что первый из них несет на N-конце ацетильную группу и содержит [c.45]

    Электрофорез во втором направлении можно также проводить в геле с градиентом концентрации полиакриламида в присутствии ДСН. Такая система была использована для разделения рибосомных белков [89]. Применение градиента геля во втором направлении целесообразно, по-видимому, в тех случаях, когда разделяемые белки имеют молекулярные массы, различающиеся в широких пределах. [c.231]


    Пожалуй, наиболее полной экстракции рибосомных белков можно добиться путем разрушения структуры рибосом под действием ДСН [1375]. В этом случае рибосомные белки образуют комплексы с ДСН, которые можно подвергать электрофорезу в ДСН-содержащих гелях без предварительного удаления нуклеиновых кислот. В практическом отношении применение ДСН очень удобно, поскольку это позволяет анализировать небольшие количества рибосом или рибосомных субчастиц. Так, например, из фракций, полученных при центрифугировании в градиенте плотности, можно выделить рибосомные субчастицы путем осаждения ТХУ. Осадки после нейтрализации растворяют в буфере, содержащем ДСН [599], и белки разделяют электрофорезом в соответствии с их молекулярными массами. [c.310]

    Шапиро и др. [1171] предложили сходную систему для разделения полипептидных цепей белков. В этой системе гель содержит 0,1 М фосфатный буфер (pH 7,1) и 0,1% ДСН. Буфер следует готовить из фосфатов натрия, так как ионы калия дают осадок с ДСН. Перед электрофорезом рекомендуется добавлять 2-меркаптоэтанол или другой восстановитель 5Н-групп. Описанная система с небольшими изменениями была использована многими авторами [119, 120, 456, 679, 1300] для определения молекулярных масс рибосомных белков. [c.311]

    Во всех до сих пор рассмотренных примерах регуляции транскрипции на взаимодействие РНК-полимеразы с промотором влияли белки. Регуляция синтеза рибосомных РНК дает пример того, что с РНК-полимеразой могут непосредственно реагировать и низко молекулярные эффекторы. [c.154]

    Модели вторичных структур транспортных и рибосомных РНК подробно рассмотрены во втором томе этого учебника (Спирин А. С. Молекулярная биология Структура рибосом и биосинтез белка.— М. Высшая школа, 1986)  [c.38]

    Лучшим способом аналитического разделения рибосомных белков является электрофорез в геле. Уже при одномерном гель-электрофорезе в денатурируюших условиях можно получить значительное фракционирование р41босомных белков по заряду и молекулярной массе (размеру). Среди рибосомных белков большинства живых организмов преобладают умеренно основные полипептиды, хотя всегда [c.90]

    В рибосоме Е. соИ только в одном экземпляре. Наиболее крупный белок содержится в малой субчастице это S1 (557 аминокислотных остатков, молекулярная масса 61160 дальтон) он довольно лабильно связан с рибосомой и легко теряется при выделении. Остальные белки много меньше по размеру молекулярная масса самых крупных из них (S2, S3) —около 26000 дальтон. Самые маленькие белки — L29, L30, L31, L32, L33 и L34 — представляют собой основные полипептиды с длиной около 50—60 аминокислотных остатков (молекулярная масса около 5000—7000 дальтон), и все сосредоточены в большой рибосомной субчастице. Размеры рибосомных белков Е. oli представлены в табл. 1. [c.92]

    Особенно аажная роль принадлежит электронной микроскопии а исследовании комплексов рибосом с антителами к индивидуальным рибосомным белкам или отдельным участкам рРНК. модифицированным низко молекулярными химическими агентами (гаптена-ми) или несущим природную модификацию (6,6-днметиладенин, 7-метилгуанин). Этот подход называется иммунной электронной [c.403]

    Центром синтеза белков в клетке являются цитоплазматические частицы (диаметром 100—200 А), получившие названия рибосом, которые состоят примерно на 50% из рибосомной РНК (молекулярный вес 10 —10 ) и на 50% из белка. Несколько рибосом обычно объединяются в полирибосомы или полисомы. На полисомах происходит завершаюш,ий этап синтеза. Можно считать, что начальным этапом синтеза белка является активирование аминокислот, которое происходит в результате энзиматического образования аминоациладенилатов  [c.346]

    Присутствие РНК дало повод назвать эти частицы рибосомами, т. е. РНК-содержащими телами (от греческого сома — тело). РНК рибосом названа рибосомной (сокращенно рРНК), Это уже вторая встречающаяся нам (после мРНК) разновидность РНК. Ее молекулярный вес вместе с рибосомным белком (от 60 до 40%) составляет около 6 миллионов — порядок величины, характерный для самых крупных белков и ДНК. Впрочем, таким большим молекулярным весом нас теперь не удивишь. Зато обращает на себя внимание тот факт, что молекулярный вес рибосом всегда равен примерно 6 миллионам. Молекулярный вес белков гораздо более вариабелен, его значения могут колебаться от 5 миллионов до 6000. [c.61]

    Не меньшей популярностью пользуется в настоящее время и метод электрофореза в полиакриламидном геле. Добавляя к раствору акриламида, налитому в стеклянные трубки, различные количества мономеров (например, метиленбисакриламид, этилендиакрилат), образующих в процессе полимеризации поперечные сшивки, можно получить гели с различной степенью связанности [137, 404]. Устойчивость к денатурирующим растворителям, например к 8 М раствору мочевины или 1 %-ному раствору додецилсульфата натрия, составляет еще одно важное преимущество этих гелей. При наложении разности потенциалов белки, пептиды, нуклеиновые кислоты и вирусы передвигаются в этих гелях на характерные расстояния, которые зависят главным образом от их молекулярного веса (или веса частицы), а также от степени связанности сшивок геля. Разделившиеся вещества образуют характерные полосы, которые можно выявить либо с помощью методов окрашивания или локального осаждения, либо (в случае разделения радиоактивных веществ) с помощью метода радиоавтографии (см. гл. XI, разд. Б). Разрешающая способность электрофореза в полиакриламидном геле такова, что с помощью этого метода можно обнаружить и идентифицировать приблизительно 37 видов рибосомных белков [508]. То, что разделение белка на многочисленные полосы происходит в силу действительного различия между белками, а не в результате каких-то артефактов, теперь уже не вызывает солшений. Однако известно, что разделяться на отдельные полосы могут не обязательно совершенно различные вещества, но и такие близкие между собой вещества, как, например, один и тот же белок, у которого часть молекул содержит одну лишнюю амидную (— СО — NH2 С00 ) группу, а другая часть — ацетильную (—NH+— NH — СОСН3) группу [136]. С помощью электрофореза в полиакриламидном геле [c.61]


    Транслокация состоит из согласованной последовательности событий, начинающейся с ассоциации EF-G с рибосомой. Процесс зависит от гидролиза GTP. Фактор EF-G является одним из основных белков клетки. Его молекулярная масса равна 72000 дальтон, и на его долю приходится 2% растворимого клеточного белка. Фактор кодируется одним-единстпенным геном fus. Он присутствует в количествах, приблизительно эквимолярных с рибосомными белками. [c.82]

    У этих рибосом определена структура всех компонентов. Известны нуклеотидные последовательности молекул рРНК, а также аминокислотные последовательности большинства белков. Молекулярные массы двух частиц рибосомы равны соответственно 0,93 -10 и 1,59 10 . Доля РНК составляет 60% в малой субчастице и 70%-в большой субчастице. Из 52 рибосомных белков 21 входит в состав малой субчастицы (обозначаются S1-S21), а 31-в состав большой субчастицы (обозначаются L1 -L34). (Нумерация доходит до 34, поскольку ранее была допущена ошибка.) [c.103]

    В исходном методе Кальтшмидта и Уитмена [654] разделение рибосомных белков в первом направлении проводили при pH 9,6 или 8,6 в стеклянных трубках длиной 180 мм и диаметром 5 мм. Образец белка (1—4 мг) помещали в середину трубки, включая его в слой геля, образующегося путем фотополимеризации. В этих условиях одни рибосомные белки мигрировали к катоду, а другие — к аноду. Использованный на первом этапе 8%-ный полиакриламидный гель не обладал сколько-нибудь заметным свойством молекулярного сита. По окончании электрофореза примерно через 36 ч гели извлекали из стеклянных трубок и вымачивали в ацетатном буфере для стартового геля,, применяемом при электрофорезе во втором направлении. Этот [c.312]

    Все методы, включающие на втором этапе электрофорез в геле с ДСН, дают возможность определять молекулярные массы белков, присутствующих в разделенных зонах. Другой подход к определению молекулярных масс рибосомных белков описали Бикль и его сотрудники [119, 120]. После двухмерного разделения рибосомных белков в системе без ДСН центральную часть каждой зоны вырезают, белки элюируют буферо м, содержащим 6 М мочевину и 1 % ДСН, и подвергают их электрофорезу в геле с ДСН. [c.314]

    Транскрипцию генов рибосомных РНК, тРНК и большинства генов, кодирующих белки, обеспечивают молекулы РНК-полимеразы, содержащие главную а-субъединицу (молекулярная масса у Е. oli 70 кД, у Вас. subtilis— 43 кД). На несколько тысяч молекул РНК-полимеразы, имеющихся в бактериальной клетке, приходится примерно тысяча молекул главной а-субъединицы. В меньших количествах имеются минорные а-субъединицы, используемые для транскрипции ограниченного числа генов (см. раздел 3 этой главы). Набор минорных а-субъединиц у разных бактерий неодинаков. По размеру они меньше главной а-субъединицы. Сравнение нуклеотидных последовательностей генов разных а-субъединиц свидетельствует о том, что все они произошли от одного предкового гена. [c.135]

    В представленном в этом разделе кратком описании расчетных методов нашли отражение основные тенденции развития конформационного анализа пептидов и белков в последнее время. Несмотря на многочисленность и видимое разнообразие новых теоретических разработок, их сближает ряд общих черт принципиального характера, причем тех же самых, что были присущи предшествующим теоретико-методологическим исследованиям. Отмечу лишь три таких особенности. Во-первых, практически все предложенные методы расчета исходят из предположения, что нативная трехмерная структура белка имеет самую низкую внутреннюю энергию. Поэтому конечная цель каждого метода состоит в установлении глобальной конформации молекулы по известной аминокислотной последовательности. Такое предположение, сформулированное более 40 лет назад, до сих пор не встретило каких-либо противоречий со стороны экспериментальных фактов и, следовательно, может считаться оправданным. Во-вторых, в последние годы, как и ранее, во всех случаях предпринимались попытки подойти к расчету глобальной конформации белка путем усовершенствования предсказательных алгоритмов, процедур минимизации и вычислительной техники. Надежды на решение структурной проблемы по-прежнему связываются не с более глубоким проникновением в молекулярную физику белка и разработкой соответствующих теорий, а главным образом с достижением в области методологии теоретического конформационного анализа и развитием компьютерной аппаратуры. Между тем такой подход в принципе не может привести к априорному расчету глобальной конформации белка. В разделе 2.1 уже указывалось, что перебор со скоростью вращательной флуктуации (10 с) всех мыслимых конформационных состояний даже у низкомолекулярной белковой цепи (< 100 остатков) занял бы не менее 10 лет. Следовательно, при беспорядочно-поисковом механизме сборка белка как в условиях in vivo в процессе рибосомного синтеза, так и в условиях in vitro в процессе ренатурации не может осуществляться через селекцию конформации всех локальных минимумов потенциальной поверхности. Реальные же возможности самых совершенных современных методов расчета ограничены независимым анализом тетра- и пентапептидов, рассчитанных четверть века назад. Ни один из существующих теоретических методов не в состоянии проводить конформационный анализ сложных олигопептидов, а тем более белков, без привлечения дополнительной информации - результатов прямого эксперимента, касающегося исследуемого объекта, или статистической обработки имеющихся структурных данных. В-третьих для всех предложенных методов расчета характерно отсутствие классификации пептидных структур, оправданной с физической точки зрения и [c.246]

    ЖИВОТНЫХ, Грибы, растения и простейших, содержит несколько более крупные 80S рибосомы. Их молекулярная масса составляет около 4 10 дальтон, а линейные размеры от 25 до 30 нм (в лиофильно-высушенном состоянии). Они также включают только два типа биополимеров — РНК и белок, но содержание белка в них существенно больше, чем в прокариотических рибосомах соотношение масс РНК белок около 1 1, парциальный удельный объем около 0,65 смз/г и плавучая плотность в s l 1,55—1,59 г/смз. Важно отметить, что абсолютное количество как РНК, так и белка (а не только пропорция белка) в 80S рибосомах существенно больше, чем в 70S рибосомах. Рибосомная РНК 80S рибосом также связана, в основном, с такими двувалентными катионами, как Mg2+ и Са2+, а также с небольшим количеством полиаминов и диаминов (спермин, спермидин, путресцин). [c.53]

    Однако хлоропласты и митохондрии эукариотических клеток содержат рибосомы, отличные от 80S типа. Рибосомы хлоропластов высших растений принадлежат к истинному 70S типу и практически не отличимы от рибосом эубактерий и синезеленых водорослей по вышеприведенным показателям и по более детальным молекулярным характеристикам. Митохондриальные рибосомы более разнообразны в зависимости от принадлежности организма к тому или иному царству эукариот. Наиболее изучены рибосомы митохондрий грибов и млекопитающих. Митохондриальные рибосомы грибов (Sa haromy es, Neurospora) похожи на прокариотические 70S рибосомы, но, может быть, лишь слегка крупнее (около 75S) и содержат относительно больше белка абсолютное содержание рибосомной РНК в них, повидимому, почти такое же, как в типичных 70S рибосомах. Митохондриальные рибосомы млекопитающих, однако, существенно мельче типичных 70S рибосом, имея также и существенно меньшее абсолютное количество рибосомной РНК на частицу их иногда называют мини-рибосомами . Действительно, коэффициент седиментации рибосом из митохондрий млекопитающих составляет всего около 55S, а тотальная масса рибосомной РНК на частицу более чем на 1/3 меньше, чем в типичных 70S рибосомах. В то же время, митохондриальные рибосомы млекопитающих содержат довольно много белка, так что общие размеры их как будто бы не сильно отличаются от таковых прокариотических рибосом. В целом, несмотря на ряд необычных черт, по ряду своих признаков, и в том числе по функциональному поведению, митохондриальные рибосомы млекопитающих все же близки к прокариотическим 70S рибосомам. [c.54]

    Рис. 66. Электронные микрофотографии рибосомных 50S субчастиц, прореагировавших с антителами а —антитела против белка L7 / L12 (по W. А. Stry harz et al. V-Mol. Biol., 1978, V. 126, p. 123-140) оригинал предоставлен д-ром Дж. Лейком, Калифорнийский университет, Лос-Анджелес) б —антитела против белка L1 (предоставлено д-ром Г. Штоффлером, Институт молекулярной генетики им. М. Планка, Зап. Берлин) в — антитела против 5S РНК-белкового комплекса SOS частицы видны, с их выпуклой ( задней ) стороны (предоставлено В. Д. Васильевым, Институт белка АН СССР, Пущино) [c.111]

    Репрессия трансляции под действием двуспиральной РНК. В лизате ретикулоцитов двуцепочечные РНК, включая как двуспиральные фрагменты вирусного происхождения (полиовируса или реовирусов), так и синтетические комплексы поли(А) поли(и) или поли(1) поли(С), вызывают ингибирование синтеза белка в присутствии гемина, похожее по всем признакам на репрессию, вызываемую отсутствием гемина. Двуцепочечная РНК, которая оказывает такое воздействие на трансляцию, должна состоять не менее, чем из 50 пар нуклеотидных остатков. Оказалось, что, так же как и в результате отсутствия гемина, в присутствии такой двуцепочечной РНК происходит активация ингибитора инициации, обозначаемого как dsl, и этот ингибитор тоже является протеинкиназой, фосфорилирующей а-субъединицу eIF-2. В отличие от H I, однако, dsl связан с рибосомными частицами и представляет собой белок с молекулярной массой около 67000 дальтон. Активация ингибитора требует АТФ и происходит как результат автофосфорилирования белка. Именно автофосфорилирование индуцируется взаимодействием белка с двуцепочечной РНК. По-видимому, механизм репрессии инициации под действием активированного dsl во всем аналогичен таковому в случае H I и заключается в изменении взаимодействия eIF-2 в результате его фосфорилирования с дополнительным белком eIF-2B (см. выше). [c.262]

    Аналогичные белковые факторы инициации обнаружены также в эукариотических клетках. Открыто около 10 эукариотических белковых факторов инициации (см. табл. 14.1), их принято обозначать elF. Все они, по-видимому, важны для инициации, однако только три из них абсолютно необходимы и существенны для белкового синтеза eIF-2, eIF-3 и eIF-5. Они получены в чистом виде eIF-2 состоит из а-, 3- и у-субъединиц (мол. масса 38000, 47000 и 50000 соответственно), eIF-3 (мол. масса 500000—700000) и eIF-5 (мол. масса 125000). Укажем также, что в синтезе белка их роль тождественна роли инициаторных белков у прокариот. Отличительной особенностью синтеза белка у эукариот является, кроме того, наличие среди 10 белковых факторов инициации еще одного белка, названного кэп-связы-вающим. Соединяясь с 5 -участком кэп мРНК, этот белок содействует образованию комплекса между мРНК и 40S рибосомной субчастицей. Необходимо отметить, что до сих пор не раскрыты тонкие молекулярные механизмы участия белковых факторов инициации как у про-, так и у эукариот в сложном процессе синтеза белка. [c.526]

    Рибосомы в прокариотической клетке (числом порядка Ю на клетку) состоят приблизительно из 30% белка и 70% РНК, что в расчете на всю клетку составляет до 40% белка и 90% РНК "Мягкий" лизис растущих клеток сопровождается выделением почти всех рибосом в виде полирибосомомембранных агрегатов, содержащих все компоненты белоксинтезирующей системы Полирибосомы представляют собой цепочки, состоящие из 70S рибосомных мономеров с диаметром порядка 0,02 мкм, присоединенных к мРНК При низких концентрациях ионов магния — меньше 10 М 70S рибосомы диссоциируют на 30S и 50S субъединицы Размер первых приблизительно 0,007 — 0,016 мкм, молекулярная масса 800 кДа Каждая 30S субъединица включает одну молекулу 16S РНК с ММ около 500 кДа и 21 молекулу разных белков, 50S субъединица размером 0,014 — 0,016 мкм имеет ММ 1,8 10 кДа и содержит [c.103]


Смотреть страницы где упоминается термин Рибосомные белки, молекулярные: [c.91]    [c.96]    [c.218]    [c.514]    [c.22]    [c.278]    [c.63]    [c.63]    [c.310]    [c.93]    [c.463]    [c.53]    [c.527]    [c.206]    [c.230]    [c.249]    [c.100]    [c.489]    [c.579]    [c.221]   
Ферменты Т.3 (1982) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Белки молекулярный вес



© 2025 chem21.info Реклама на сайте