Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Детектор установка

    В качестве реактора использовалась трубка такого же диаметра, заполненная реагентом, нанесенным на хромосорб Р в соотношении 1 1, и включенная между аналитической колонкой № 2 и детектором. Установка реактора перед аналитической колонкой менее выгодна, так как может приводить к появлению дополнительных пиков за счет возможных превращений компонентов смеси. [c.117]


    Блок регистратора типа БРХ-1 (рис. 7) служит для управления работой блока колонки хроматографа ХЛ-4. Блок регистратора осуществляет измерение компонентов газа, последовательно проходящих через детектор, измерение и регулирование температуры в блоке колонки, управление вспомогательными операциями — установкой нуля измерительного моста детектора, установкой тока детектора, контролем нуля регистратора и переключением пределов измерения. [c.386]

    Окончательный анализ продуктов проводили хроматографическим методом с использованием плазменно-ионизационного детектора. Установка, по-видимому, может быть использована в условиях промышленного производства. [c.46]

    При установке источника в дно ионизационной камеры (тип А) могут применяться серийные, изготавливаемые для других целей дисковые источники, обладающие высокой механической прочностью. Излучение в этом случае используется относительно плохо. В варианте В источник является внешним цилиндрическим электродом ионизационной камеры. Эта форма удобна в том случае, когда радиоактивное вещество находится в виде металлической фольги (стронций-90, радий-В, тритий). Она применяется в большинстве серийно изготовляемых радиоизотопных детекторов. Установка источника в качестве внутреннего электрода (тип С) обеспечивает оптимальное использование излучения, особенно в случае применения газообразного радиоактивного вещества (криптон-85). В этой конструкции величина и форма ионизационной камеры могут быть легко изменены при сохранении формы источника. Для того чтобы избежать рекомбинации ионов с электронами или захвата электронов, следует обеспечить возможно большую однородность и высокую напряженность поля между электродами. [c.141]

    В ряде случаев (например, при работе со сцинтилляционными детекторами) установка для регистрации излучений может содержать дискриминатор. Дискриминатор дает возможность различать импульсы с разными амплитудами в частности, как уже говорилось, его использование позволяет снизить величину темнового тока ФЭУ, так как составляющие этот ток импульсы имеют сравнительно небольшие амплитуды. Заметим, что при измерении скорости счета использование дискриминатора необязательно, так как весьма большие изменения амплитуд импульсов практически не влияют на результаты регистрации. [c.101]

    Блок регистратора, регистрирующий компоненты газа, последовательно проходящие через детектор, измеряет и регулирует температуру в блоке колонки управления вспомогательными операциями установкой нуля измерительного моста детектора, установкой тока детектора, контролем нуля регистратора, переключением пределов измерения. Перечисленные операции осуществляются ручным управлением. [c.71]


    Для определения следов обычная ячейка катарометра недостаточно чувствительна. Поэтому применяют специальные ячейки особо высокой чувствительности или какой-либо другой высокочувствительный детектор, как, например, пламенно-ионизационный. Независимо от вида детектора установка должна быть взрывозащищенной. [c.119]

    Схема установки изображена на рис. 54. Газ-носитель водород через регулятор расхода I типа РРГ-1А поступает в сатураторы 2 со скоростью 2—3 мл мин, где при 10—12° С он насыщается парами изооктана и поступает в реактор 4 с анализируемым катализатором. Из реактора продукты реакции отводятся в пробоотборный кран 6 и далее в хроматографическую колонку 7 или в линию сброса. Колонка заполнена частицами термоизоляционного кирпича размером 0,3—0,4 мм, пропитанными 15%-ным раствором хинолина, и имеет кран для обратной продувки. После колонки газ-носитель и продукты реакции пропускают через детектор по теплопроводности 8. Температура в реакторе и сатураторе поддерживается электропечью 5 и термостатом 3. [c.160]

    Аппаратура, Принципиальная схема газового хроматографа представлена на рис. 3.3. Подвижная фаза (газ-носитель) непрерывно подается из баллона 1 через редуктор 2 в хроматографическую установку. Анализируемую пробу вводят дозатором 4 либо в поток газа-носителя, либо через резиновую мембрану в испаритель 3. Из испарителя проба переносится газовым потоком в хроматографическую колонку 5. Изменение состава выходящей из колонки смеси фиксируется детектором 7 и записывается на ленте регистратора 9. Хроматографическая колонка и детектор помещены в термостаты 5 и 5. Дозатор предназначен для введения точного количества образца пробы в хроматограф. В качестве дозатора используют специальное дозирующее устройство или микрошприц. Объем вводимой пробы 0,1 мкл — 0,1 мл для жидких и 0,5—20 мл для газообразных проб. [c.192]

    Кроме детекторов, ТПУ может иметь датчики, сигнализирующие о положении поршня и о стадиях работы ТПУ пуск поршня, проход через детекторы, приход в камеру и т.д. Наличие таких датчиков облегчает управление ТПУ. Все ТПУ должны иметь приборы (датчики) для измерения температуры стенок, жидкости и давления на входе и выходе из установки. Для обеспечения полной автоматизации процесса поверки ТПУ снабжаются датчиками температуры и давления. В описанных ТПУ применяются поршни, вьшолненные в виде полого шара. Внутренняя полость шара заполняется жидкостью, для чего он снабжается клапаном, заделанным в стенку. К материалу и конструкции поршня предъявляются жесткие требования стойкость к измеряемой среде, высокая механическая прочность и прочность на истирание, высокая эластичность, стойкость к воздействию температуры (от -50 до +50 °С), низкий коэффициент трения, конструкция поршня должна позволять изменять его диаметр путем закачивания жидкости под избыточным давлением. [c.89]

    Вместимость ТПУ с помощью описанной установки определяют в следующей последовательности. При помощи регулятора и указателя расхода устанавливают выбранное значение расхода жидкости. При этом перекидное устройство (переключатель потока) должно быть в положении Пролет . Взвешивают (уравновешивают) пустой бак весов ОГВ. Производят пуск поршня ТПУ. При прохождении поршнем первого по ходу детектора на частотомере Ч1 начинается отсчет времени движения поршня, перекидное устройство переключается в положение Бак и на частотомере 42 начинается отсчет интервала времени между импульсами выходного сигнала датчика положения перекидного устройства при переключении его в положение Бак . При прохождении поршнем второго детектора останавливается отсчет времени на частотомере 41, перекидное устройство переключается в положение Пролет и останавливается отсчет времени переключения на Пролет на частотомере 42. [c.159]

Рис.5.2. Схема поверочной установки 1 - ТПУ, 2, 5 - датчики давления и температуры, 4 - емкость накопительная, 5 - весы (мерник), 6 - емкость-хранилище, 7 - насос, 8 - фильтр, 9 -указатель расхода, 10,11 - вторичные приборы манометров и термометров, Д1-Д4 - детекторы, К1, К2, КВ, КС - краны запорные, КР1, КР2 - краны регулирующие, КЭ - клапан электромагнитный, П - переключатель, УОИ - устройство обработки информации, ЦПУ - цифропечатающее устройство, БУ - блок управления Рис.5.2. <a href="/info/806755">Схема поверочной</a> установки 1 - ТПУ, 2, 5 - <a href="/info/21567">датчики давления</a> и температуры, 4 - <a href="/info/1820347">емкость накопительная</a>, 5 - весы (мерник), 6 - <a href="/info/269485">емкость-хранилище</a>, 7 - насос, 8 - фильтр, 9 -<a href="/info/122226">указатель расхода</a>, 10,11 - <a href="/info/904725">вторичные приборы</a> манометров и термометров, Д1-Д4 - детекторы, К1, К2, КВ, КС - <a href="/info/392827">краны запорные</a>, КР1, КР2 - <a href="/info/1834419">краны регулирующие</a>, КЭ - <a href="/info/1161587">клапан электромагнитный</a>, П - переключатель, УОИ - <a href="/info/1683845">устройство обработки информации</a>, ЦПУ - цифропечатающее устройство, БУ - блок управления
Рис.5.5. Схема поверочной установки I - преобразователь (компаратор), 2,3 - ТПУ (поверяемая или 1 -го разряда), 4 - регулятор давления (расхода), 5 - манометр, 6 - устройство для определения свободного газа, 7 - датчик давления, 8 - датчик температуры, 9 - орган управления регулятором (задатчик), 10, 11, 15 - вторичные приборы манометра, термометра и турбинного счетчика, 12 - емкость-хранилище, 13 - насос, 14 - фильтр, 41, 42 - частотомеры. П1, П2 - переключатели, Д1-Д4 - детекторы ТПУ, УОИ - устройство обработки информации, ЦПУ - цифропечатающее устройство Рис.5.5. <a href="/info/806755">Схема поверочной</a> установки I - преобразователь (компаратор), 2,3 - ТПУ (поверяемая или 1 -го разряда), 4 - <a href="/info/14109">регулятор давления</a> (расхода), 5 - манометр, 6 - устройство для <a href="/info/362088">определения свободного</a> газа, 7 - <a href="/info/21567">датчик давления</a>, 8 - <a href="/info/13486">датчик температуры</a>, 9 - <a href="/info/1664006">орган управления</a> регулятором (задатчик), 10, 11, 15 - <a href="/info/904725">вторичные приборы</a> манометра, термометра и <a href="/info/1641802">турбинного счетчика</a>, 12 - <a href="/info/269485">емкость-хранилище</a>, 13 - насос, 14 - фильтр, 41, 42 - частотомеры. П1, П2 - переключатели, Д1-Д4 - детекторы ТПУ, УОИ - <a href="/info/1683845">устройство обработки информации</a>, ЦПУ - цифропечатающее устройство

    Для определения Д можно непосредственно измерить Тпп и Тпв следующим образом. Заслонку перекидного устройства устанавливают в положение, при котором рассекатель разделяет струю жидкости на равные части, шторки регулируют так, чтобы свет от источника падал на фотодиод датчика положения и на его выходе был соответствующий сигнал. Включают насос поверочной установки и устанавливают расход жидкости, при котором будет производиться поверка ТПУ (например, среднее значение 40-50 м /ч, так как обычно разновременность переключения от расхода не зависит). Заслонку устанавливают в положение Пролет и с помощью кнопки Д1 (тумблера), имитирующей контакты детектора ТПУ, подают команду на переключение в положение Бак . Одновременно замыкается цепь включения электронно-счетного частотомера, настроенного на режим измерения интервала времени и начинается отсчет времени Тпв, прекращаемый сигналом датчика положения. Затем кнопкой Д2 производится переключение в положение Пролет и таким же образом измеряется время Г,,,,. Время необходимо измерять с дискретностью не более 10 с. Измерения производятся многократно не менее 11 раз. [c.181]

    Как представителям большинства современных профессий, осмотрщикам приходится работать со сложной аппаратурой. Здесь и ультразвуковой детектор повреждений со встроенным осциллографом, и установка для магнитного контроля, и даже комбинированная система, включающая полиэкранную ультразвуковую аппаратуру и дисплей. [c.68]

    Одним из важнейших узлов хроматографической установки является детектор — устройство, позволяющее фиксировать наличие хроматографируемых веществ на выходе из колонки. Можно утверждать, что успехи современной газовой хроматографии в значительной степени связаны с достижениями в области детектирования [3, с. 255]. [c.97]

Рис. 52. Схема двухступенчатой установки с двумя детекторами для идентификации веществ Рис. 52. <a href="/info/473349">Схема двухступенчатой установки</a> с двумя детекторами для идентификации веществ
    Для измерения прозрачности золя используют установку, схема которой приведена на рис. 70. В установке мол<по использовать любой источник света / (лампа накаливания, лазер) и любой детектор 5 оптического излучения (фотоэлемент, фотодиод, фотоумножитель, фотосопротивление). В качестве источника магнитного поля используют соленоид 3, содержащий 1—2 тысячи витков медного провода диаметром 1—2 мм. Длина соленоида должна быть в 8—10 раз больше диаметра его внутреннего отверстия. В этом случае напряженность магнитного поля в центре соленоида Н=п1, где п — число витков провода на единицу длины соленоида и I — ток, проходящий по обмотке соленоида. [c.125]

    До конца пятидесятых годов промышленность не производила газовых хроматографов, и хроматографисты вынуждены были своими силами изготовлять и налаживать простейшие газо-хрома-тографические установки. Тем не менее первоначальные и наиболее оригинальные открытия, как, например, открытие Мартином и Джеймсом газо-жидкостной хроматографии, были сделаны именно с применением такой простейшей аппаратуры. Любая простейшая хроматографическая установка или хроматограф промышленного изготовления состоит из следующих основных узлов 1) источник газа-носителя с системой очистки, регулирования и измерения его потока через хроматографическую колонку 2) узел ввода пробы в колонку (дозатор) 3) хроматографическая колонка 4) детектор с регистратором (визуальным или самопишущим). [c.23]

Рис. 10. Простая газо-хроматографическая установка с детектором по теплоте сгорания Рис. 10. Простая <a href="/info/1683169">газо-хроматографическая установка</a> с детектором по теплоте сгорания
    На рис. 10 показана самодельная установка с таким детектором, в качестве которого был использован электрический газоанализатор промышленного изготовления типа ПГФ-11-54 с видоизмененной нами системой рабочей и сравнительной камер. Этот простой прибор в течение многих лет с успехом применялся на химических предприятиях В контроле производства фенола и ацетона для определения примесей этилбензола и бутилбензола в техническом изопропил-бензоле. Типичная хроматограмма приведена на рис, 11. Условия разделения колонка 0,28 X 120 см с 20% парафина на инзенском кирпиче температура колонки 132° С скорость потока газа-носи- [c.27]

Рис. 12. Схема самодельной лабораторной газо-хроматографической установки с катарометром в качестве детектора Рис. 12. Схема самодельной лабораторной <a href="/info/1683169">газо-хроматографической установки</a> с катарометром в качестве детектора
    Кислотность катализатора определяют по количеству адсорбированного им аммиака из потока гелия при 200—260 °С. Выбор аммиака в качестве адсорбата обусловлен небольшим размером его молекулы, устойчивостью при высоких температурах, простотой его дозировки в поток газа-носителя, подходящей константной диссоциации (р/( = 4,75), позволяющей определять не только сильные кислотные, но и слабые центры. При анализе используют высокотемпературный хроматограф марки Вилли-Гиде с детектором по теплопроводности и температурой термостатирования 260 С. Хроматограф снабжен системой блокировки для отключения его в случае неконтролируемого повышения температуры выше установленной. Схема установки показана на рис. 44. Гелий из баллона проходит систему очистки, состоящую из кварцевой колонки с окисью меди 5 для очистки от водорода и углеводородов при 600—700°С, колонки с никельхромовым катализатором 7 для очистки от кислорода, колонки с аскаритом 9 для поглощения двуокиси углерода и осушительных колонок с окисью [c.133]

    Теперь об эксперименте Дэвиссона и Джермера, Поначалу Дэвиссон искал. .. электронные оболочки атомов, а точнее, изучая отражение электронов от твердых тел, он стремился прощупать конфигурацию электрического поля, окружающего отдельный атом. В 1923 г. совместно со своим учеником Г. Канс-маном он получил кривые распределения рассеянных электронов по углам в зависимости от скорости первоначального (нерассеянного) пучка. Схема опыта показана на рис. 4. В этой установке можно было изменять энергию первичного пучка, угол падения на мишень (поверхность металла) и положение детектора. Согласно классической физике рассеянные электроны должны вылетать во всех направлениях, причем их интенсивность мало зависит от угла рассеяния и еще меньше — от энергии первичного пучка. Почти так и получалось в опытах Дэвиссона и Кансмана. Почти., ., но небольшие максимумы на кривых распределения электронов по углам в зависимости от энергии нерассеянного пучка все-таки были. Исследователи приписали их неоднородности электрических полей около атомов мишени. [c.21]

    Наиболее распространены приборы автоматического действия, основанные на линейной зависимости диэлектрической проницаемости тоилива от содержания в нем воды. Из влагомеров данного типа представляет интерес установка Микроскан , выпускаемая фирмой Миллипор (США) с 1963 г. и предназначенная для непрерывного конт1роля за содержанием воды и механических примесей в потоке реактивных топлив с помощью емкостного датчика. При прохождении механических частиц (или частиц воды) между пластинками конденсатора (детектор Микро-Скан ) его емкость изменяется пропорционально объемной концентрации частиц. Изменение емкости преобразуется в сигнал с постоянной амплитудой и частотой, который усиливается в многокаскадном усилителе и подается на указатель концентрации примесей в топливе. Прибор реагирует на суммарное содержание примесей воды и механических частиц и нечувствителен к воздушным и паровым пузырькам. Установка обладает высокой чувствительностью по воде 0,000001% по механическим примесям 0,02632 мг/л по размеру частиц 5 мкм [149, 154]. Используют установку на автотопливозаправщиках и гидрантных тележках, а также на трубопроводах и стационарных резервуарах. Для отсечения потока топлива при загрязненности его выше установленного уровня предусмотрено использование дополнительного сигнала самописца и автоматических механизмов. [c.176]

    Блок-схема хроматографической установки, используемой для определения удельной поверхности адсорбентов методом тепловой десорбции, представлена на рнс 13. Потоки гелия и азота нз баллонов 1 и 2 подаются в определенном соотношении в смеситель <3, и которого газовая смесь поступает в сравнительную камеру детектора 6 и далее в колонку 8 с исследуемым адсорбентом, в которой прн охлаждении происходит адсорбция азота. Из колонки газоиая смес[1 поступает в измерительную камеру детектора 7. Детектор фиксирует изменение состава газовой смеси в результате адсорбции. Сигнал детектора Iосту-нает на самопишущий потенциометр 5. [c.50]

    Перечень подключаемого оборудования объемные (турбинные) преобразователи расхода с частотным выходом, массовые преобразователи расхода с частотным выходом, преобразователи плотности с частотным или токовым выходом, преобразователи температуры с токовым выходом, преобразователи давления с токовым выходом, преобразователи вязкости с токовым выходом, преобразователи влагосодержания с токовым или частотным выходом, трубопоршневая установка (одно- или двунаправленная, с двумя или четырьмя детекторами). [c.71]

    Как уже было сказано, в двунаправленных ТПУ поршень совершает движение в калиброванном участке попеременно то в одном, то в другом направлении. На рис.2.3 показана схема такой ТПУ с 4-ходовым краном. Установка состоит из калиброванного участка 3 с детекторами 4, двух камер 2 и устройства для изменения направления движения жидкости - 4-ходового крана I. Обе камеры имеют одинаковую конструкцию и представляют собой отрезок трубы, имеющий диаметр больше чем диаметр калиброванного участка. Обычно камеры располагаются наклонно или вертикально. После выхода из калиброванного участка поошень попадает в одну из камер и находится в ней в восходящем потоке до тех пор, пока направление движения не изменится на обратное. При этом поршень увлекается в калиброванный участок. Для изменения направления движения жидкости в ТПУ применяются 4-ходовые краны различной конструкции 2-образные, пробковые и т.д. На рис.2.4, а показан 7-образный кран. В цилиндрическом корпусе 1 находится 7-образный переключатель 2, способный поворачиваться вокруг вертикальной оси и уплотненный по периферии манжетой 3. Поворот крана осуществляется с помощью гидроцилиндра. Схема переключения потока ясна из рисунка. Для уменьшения сил трения и предотвращения разрушения манжеты при повороте крана манжета выполнена в виде трубки из полиуретана, внутренняя полость которой заполнена маслом (рис.2.4, б). После поворота крана внутрь манжеты подаётся давление, трубка расширяется и осуществляется герметизация крана. Перед очередным поворотом давление внутри манжеты снижается, уменьшается ее [c.87]

Рис.5.1. Схема поверочной установки 1 - ТПУ, 2,3- датчики давления и температуры, 4 - регулятор расхода, 5 - смотровое стекло, 6 - датчик положения, 7 - труба пролетная, 8 - насадок, 9 - перекидное устройство, 10- электромагниты, И - емкость накопительная, 12 - весы ОГВ (мерник), 13 - емкость-хранилище, 14 - насос, 15 -указатель расхода, 16, 17 - вторичные приборы термометров и манометров, 37, 32 - задвижки, П - переключатель, К/, К2 - клапаны электромагнитные, КС - кран сливной, Д/-Д - детекторы, ЦПУ - цифропечатающее устройство, УОИ - устройство обработки инфомации, Ч/, 42 - частотомер, БУ - блок управления Рис.5.1. <a href="/info/806755">Схема поверочной</a> установки 1 - ТПУ, 2,3- <a href="/info/21567">датчики давления</a> и температуры, 4 - <a href="/info/96783">регулятор расхода</a>, 5 - <a href="/info/828762">смотровое стекло</a>, 6 - датчик положения, 7 - труба пролетная, 8 - насадок, 9 - перекидное устройство, 10- электромагниты, И - <a href="/info/1820347">емкость накопительная</a>, 12 - весы ОГВ (мерник), 13 - <a href="/info/269485">емкость-хранилище</a>, 14 - насос, 15 -<a href="/info/122226">указатель расхода</a>, 16, 17 - <a href="/info/1522175">вторичные приборы термометров</a> и манометров, 37, 32 - задвижки, П - переключатель, К/, К2 - клапаны электромагнитные, КС - <a href="/info/843614">кран сливной</a>, Д/-Д - детекторы, ЦПУ - цифропечатающее устройство, УОИ - <a href="/info/740249">устройство обработки</a> инфомации, Ч/, 42 - частотомер, БУ - блок управления
    Установка для изучения кинетики реакций должна удовлетворять следующим требованиям а) максимальное отношение сигнала к шуму при измерении слабых световых потоков б) возможность регистрации свечения в широкой области спектра. Для выполнення первого требования необходима максимальная концентрация энергии излучения на приемник света — детектор и подбор соответствующего детектора. [c.121]

    На рис. 43 приведена общая схема установки для изученггя -хемплюминесценцин химических реакций. Вокруг реакционного сосуда устанавливаются сферические зеркала, фокусирующие световой поток на внешнюю грань светопровода. Светопровод направляет свет на детектор, которым чаще всего служит фотоэлектронный умножитель. Используемые обычно фотоумножители типа ФЭУ-38 регистрируют излучение в видимой области (300—800 нм) [c.121]

    Препаративная часть установки для лолучения чистых газов представляет собой блок термостатируемых колонок, детектора и записывающего устройства. Разделение бутиленов троводилось ла колонках двух т1ипов  [c.56]

    Увеличение диаметра колонки приводит к дополнительному размыванию, но увеличивает производительность установки. Поэтому выбор как диаметра колонки, так и ее длпны должен быть компромиссным. В ЖАХ внутренний диаметр обычно равен 1—6 мм и редко превышает 12 мм. Уменьшение диаметра лимитируется трудностями заполнения колонки, а также чувствительностью детектора, увеличение — уменьшением скорости движения подвижной фазы. [c.82]

    Описание установки (см. рис. 39). Установка описана Богомоловым, Миначевым и Романовой [23]. Поток азота и отдельна поток гелия с измеренными в реометрах 2 скоростями направляют в колонки 3 и 4, где газы очищаются от примесей кислорода и паро)з воды. Далее азот и гелий смешиваются в Т-образном смесительном кране 5. Затем объединенный поток проходит через сравнительную камеру детектора по теплопроводности (ката-рометра) б, автоматически записывающего изменение состава газа, ловушку 7 и через восьмиходовой кран 8 поступает в [c.128]

    Возможно применение предварительного усиления СВЧ-колебаний специальными устройствами (например, лампой бегущей волны). Модуляция магнитного поля на глубину, меньшую ширины резонансной линии, обычно производится с высокой частотой (100 кГц — 1 МГц). Основное усиление производится избирательным усилителем, настроенным " на эту частоту. Это позволяет избавляться от интенсивных низкочастотных шумов кристаллического детектора. Требования, предъявляемые кэкс-перилментальным установкам для наблюдения электронного резонанса, полностью аналогичны требованиям, предъявляемым к ядер-норезонансным спектрометрам. [c.229]


Смотреть страницы где упоминается термин Детектор установка: [c.250]    [c.135]    [c.135]    [c.256]    [c.158]    [c.320]    [c.95]    [c.85]    [c.159]    [c.211]    [c.158]    [c.368]    [c.298]    [c.298]   
Растровая электронная микроскопия и рентгеновский микроанализ том 2 (1984) -- [ c.265 ]




ПОИСК







© 2025 chem21.info Реклама на сайте