Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Атмосфера первичная

    В табл. VI.4 перечисляются основные вещества, загрязняющие воздух, и их количество, ежегодно выбрасываемое природными и искусственными источниками. Эти вещества являются первичными загрязнителями воздуха они испускаются в атмосферу в той форме, как они приведены в таблице. Например, простейший углеводород - метан СН - побочный продукт переработки природного топлива и главный компонент природного газа. Он также производится анаэробными бактериями и термитами при расщеплении ими органических веществ. [c.410]


    Первичная атмосфера в основном состояла из углекислоты, к которой были подмешаны пары воды, аммиак, метан и в малых количествах инертные газы. [c.42]

    В недрах Земли н на ее поверхности постоянно происходит разрушение горных пород, включающих первичные минералы, образовавшиеся при застывании земной коры. Разрушающее действие оказывают высокая и низкая температуры, резкое колебание температур, вода, СОг и О2 атмосферы. Однако возникающие при этом вторичные минералы и осадочные породы, например глины, известняки, составляют только 5% всей массы земной коры. Остальные минералы — это глубинные первичные минералы и горные породы, состоящие также из первичных минералов. [c.235]

    Промышленное производство и энергетика, автомобильный транспорт и авиация, химизация сельского хозяйства и многие другие сферы деятельности человека приводят к изменению внешней среды и являются источниками загрязнения атмосферы, почвы, водоемов и морей. К основным веществам, загрязняющим воздушный бассейн, относятся оксид углерода, углеводороды, оксиды серы и азота и твердые частицы (первичные загрязнители). Другие вещества по своему происхождению являются вторичными. Например, так называемые кислотные дожди , образующиеся в результате взаимодействия оксидов серы и азота с влагой воздуха. [c.239]

    Предварительное смешение можно легко осуществить струйной инжекцией газа или воздуха в трубу Вентури. Снижение скорости газа при истечении его из инжектирующего сопла вызывает падение давления в месте истечения, что, в свою очередь, обеспечивает подсос воздуха из атмосферы. Последний затем перемешивается с газом в смесительной трубе и выходит из нее в виде частично перемешанной газовоздушной смеси. Преимущество таких горелок — необходимость подачи под давлением только газа, что упрощает и удешевляет конструкцию горелки. Подавляющее число мелких, а также определенное число средних горелок являются инжек-ционными с предварительным смешением первичного воздуха. [c.101]

    Основными характеристиками пламени являются его температура и состав. Чаще всего применяют горючие смеси, предварительно смешанные с окислителем, например кислородом воздуха, горящие в ламинарном режиме. В этом случае фронт пламени поддерживается над срезом горелки быстрым потоком газа. Фронт пламени — это зона, в которой бурно протекают химические реакции. Ламинарное пламя имеет сложную структуру и состоит из нескольких зон. Во внутренней зоне происходят первичные реакции сгорания горючей смеси с образованием различных радикалов (молекул), например С , Сз, ОН, СН и др. Верхняя часть этой зоны имеет вид ярко светящегося конуса. В реагирующих газах нет термодинамического равновесия. Аналитическое значение имеет внешний конус пламени, где происходят реакции полного сгорания образующихся во внутреннем конусе радикалов в кислороде воздуха, диффундирующего из окружающей атмосферы. Этот конус слабо окрашен и практически не имеет собственного фона в видимой области спектра. [c.11]


    Образование кислорода в процессе фотосинтеза имело важные последствия. Сначала кислород (Оз) быстро потреблялся в процессе окисления восстановленных веществ и минералов. Однако наступил момент, когда скорость поступления превысила потребление и Оз начал постепенно накапливаться в атмосфере. Первичная биосфера под смертельной угрозой своего собственного отравляющего побочного продукта (О2) была вынуждена приспосабливаться к таким изменениям. Она осуществляла это посредством развития новых типов биогеохимического метаболизма, которые поддерживают разнообразие жизни на современной Земле. Постепенно возникла атмосфера современного состава (см. табл. 2.1). К тому же кислород в стратосфере (см, гл. 2) претерпел фотохимические реакции, приведшие к образованию озона (О3), защищающего Землю от ультрафиолетового излучения. Этот экран позволил высшим организмам колонизовать сушу континентов. [c.23]

    Продукты термического разложения углеводородов нежелательны для безокислительного нагрева металла. Поэтому вряд ли можно согласиться с утверждением А. П. Баскакова о 1 легкости регулирования состава восстановительной атмосферы первичным воздухом [9, с. [c.234]

    Экологические проблемы защиты водного и воздушного бассейнов промышленных регионов от отрицательного влияния производственных выбросов в настоящее время являются общегосударственной задачей. В нефтеперерабатывающей промышленности основными блоками, имеющими наибольшие выбросы как в атмосферу, гак и в стоки, являются вакуумсоздающие системы атмосферно-вакуумных трубчаток (АВТ) и вакуумных трубчаток (ВТ). Совершенствование вакуумных блоков установок первичной переработки нефти имеет своей целью дальнейшее углубление вакуума при перегонке тяжелых остатков и сокращение как стоков, так и выбросов в атмосферу. Решению этой проблемы способствует разработка новых схем фракционирования тяжелых остатков, способов создания вакуума, а также совершенствование и модернизация оборудования существующих вакуумных блоков - вакуумных печей (частей), трансферных трубопроводов, вакуумных колонн и контактных устройств, предварительных и межступенчатых конденсаторов, самих вакуумсоздающих систем. Полное решение проблемы зак- [c.11]

    Кинетические и диффузионные пламена. Сжигание жидких углеводородов осуществляется с обязательным предшествующим испарением и, следовательно, с образованием диффузионного пламени, которое по своему характеру может быть турбулентным и светящимся, а сжигание газообразных углеводородов может осуществляться в двух совершенно отличных друг от друга типах горелочных устройств. При сжигании с предварительным смешением в устройствах осуществляется предварительная (до воспламенения) подготовка смеси первичного воздуха с топливным газом. Степень перемешивания различна от нескольких процентов до 100 % сте-хиометрической смеси. Диффузионное горение возникает при взаимодействии струи газа с окружающей атмосферой, когда весь необходимый воздух поступает непосредственно во фронт горения пламени до перемешивания с газом. Горючие газы и кислород должны диффундировать в противоположных направлениях из зоны горения и в нее. Вполне понятно, что устойчивость такого пламени будет тем выше, чем дольше сохраняется неизменным соотношение газ—окислитель, а сжигание в нем тем полнее, чем больше в топливе легких углеводородов (в этом случае необходимое соотношение газ—воздух достигается быстрее и легче, чем при сжигании углеводородов с более сложными и тяжелыми молекулами). На практике в атмосферном воздухе по этой схеме могут сжигаться только водород и метан. Во всех других случаях, если не осуществлять предварительной подготовки, будут наблюдаться интенсивная турбулентность в пламени, шум и неполное горение с образованием углерода. [c.100]

    В чистой влажной атмосфере без активатора и защитной пленки поляризационная диаграмма может быть представлена серией анодных и катодных поляризационных кривых. При внесении образца во влажную атмосферу (при i = 0) начальный потенциал железа оказывается равным 0,15—0,25 В, т. е. находится в области пассивного состояния. По мере возникновения адсорбционных слоев влаги первичная окисная пленка на железе разрушается, поверхность металла активируется, а потенциал смещается в отрицательную область (вдоль пунктирного участка анодных кривых К, V t [c.37]

    В процессе постепенного выветривания и разрушения поверхностных пород под действием различных атмосферных факторов (влага атмосферы, действие солнечной радиации, углекислоты воздуха, подземных и наземных вод) из первичных силикатных пород образуются вторичные силикаты и алюмосиликаты типа глин (каолина) и талька. [c.101]

    Основной первичной формой существования азота на земной поверхности был, по-видимому, аммиак, выделявшийся из горячих земных недр. Впоследствии он дал начало свободному азоту атмосферы, частично за счет разложения на элементы под [c.433]


    Первичные загрязнители имеют множество естественных источников, обусловленных природными процессами, происходящими на Земле в Океане даже если бы не было антропогенной деятельности человека, в атмосфере существовал бы остаточный фоновый уровень содержания вредных соединений. По данным Д. Дэвинса [212], из 4 млрд. т взвешенных частиц, находящихся в атмосфере Земли, лишь 0,7 млрд. т, или 17%, можно считать частицами, появившимися в результате деятельности человека. В большинстве это трансформированные газообразные примеси (молекулы газа,, превратившиеся в аэрозольные частицы). Выбросы сернистых соединений в результате антропогенной деятельности составляют 40%, а оксида азота 10—20% общего их содержания в атмосфере. Остальное количество приходится на природные микробиологические и химические процессы, происходящие в Океане и почве Земли. В свою очередь, содержание оксида уг- [c.239]

    Частые и мощные электрические разряды в теплой и очень влажной атмосфере отдаленных геологических эпох обусловливали частичное связывание атмосферного азота в N0. Окись азота превращалась затем в N02 и азотную кислоту, которая вместе с дождем выпадала на Землю и нейтрализовалась солями более слабых кислот (например, углекислыми). Таким образом, первичным образованием кислородных соединений азота Земля, по-видимому, обязана грозам (1). [c.434]

    Попадая в земную атмосферу, первичные лучи уже на высоте около 50 км начинают взаимодействовать с ядрами встречных атомов, что ведет к обра.зова-нию главным образом пионов (я), которые представляют собой частицы с массами порядка 0,15 (в а, е. м,). Заряд их может быть и отрицательным, и положительным, и нулевым. Сами но себе частицы эти очень неустойчивы (в состоянии покоя они могут существовать не более стомиллионных долей секунды), [c.510]

    Вторичные загрязнители. Эти вещества образуются в атмосфере при химических реакциях между первичными загрязнителями и (или) природными компонентами воздуха. Например, диоксид серы 802 реагирует с кислородом с образованием триоксида серы 80з, и поэтому оба оксида всегда присутствуют вместе. (863 + 502 обозначаются 50,(.) Дальнейшие реакции с водой и другими веществами в атмосфере могут перевести оксиды серы в сульфаты ЗО " или серную кислоту Н2504 - вторичные загрязнители, главным образом ответственные за кислотные дожди (обсуждаемые в разд. Г.11). [c.410]

    Известно, что отношение S/N в нефтях изменяется в очень широких пределах (от 0,70 до 47,3, по данным А.Н. Резникова). Однако значения больше 15 и меньше 1 встречаются довольно редко. Чтобы понять причины столь широкого диапазона колебаний значений S/N, необходимо проследить путь азота и серы от исходного 08 до нефти. Весь азот нефтей некогда был зафиксирован с помощью биосистем из атмосферы. Первичный продукт ассимиляции азота — аминокислоты. Именно они, претерпев ряд сложных преобразований, дают всю гамму азотсодержащих соединений каустобиолитов. Изначально исходное ОВ содержит много азота. Например, доля азота в диатомовых и пиридиниевых водорослях 2,5 и 4,6 % соответственно, в копеподовом зоопланктоне и бентосе 9,9 и 12,3 %, в бактериях 12,1 %. Азот и сера в биосистемах сосредоточены в основном в белках. При этом в отличие от нефтей доля азота во много раз превышает содержание серы. Так, по данным О.С. Петренко, в растительных белках азота 15,2—19 %, а серы 0,3—2,4 %. Результаты исследований современных морских и озерных отложений показывают, что белковые компоненты, куда входит азот, — наиболее нестабильная часть исходного органического материала. [c.77]

    Нефть и все другие горючие полезные ископаемые, так же как рассеянное органическое вещество осадочных пород, генетически связаны с живым веществом нашей планеты, с биосферой прошлых геологических эпох. Проблема происхождения нефти, нижний возрастной предел ее образования тесно связаны с возрастом возникновения жизни на Земле. Согласно наиболее распространенной гипотезе. Земля возникла 4,8-5 млрд лет назад в результате слипания первичного вешества холодных тел - плане-тозималей, затем произошел ее разогрев вследствие повышенной теплогенерации. Источники энергии — радиоактивный распад, импактные воздействия, ультрафиолетовое излучение, сейсмичность, приливные возмущения и др. В результате произошла дифференциация вещества первичной Земли и сформировались ядро, мантия и земная кора, близкая по составу к современной. Дифференциация вещества вызвала выделение газов и формирование первичных океанов и атмосферы. Первичная атмосфера отличалась от современной. Она имела восстановительный характер, в ее составе были гелий и вОдород, которые быстро улетучились, метан, пары воды, аммиак, СО, СО2. Свободный кислород отсутствовал. За счет высокой активности этих веществ, очевидно, образовывались полимеры, содержащие С, К, О и другие биофильные элементы, т.е. первые органические вещества возникали путем абиогенного синтеза. [c.104]

    Современное промышленное производство основных химических материалов, как неорганических, так и органических, осуществляется методами химического синтеза. В качестве исходных материалов для осуществления промышленного синтеза в настоящее время широко используются природные газы, например газы атмосферы — азот и кислород, а также залегающие в пластах горючие газы, главной составной частью которых является метай. Кроме того, в качестве исходных вещести для химических производств приобрели очень большое значение газы, получаемые попутно при добыче или первичной обработке полезных ископаемых, напрпмер коксовый газ, продукты газификации топлива, бе.-1ные сернистые газы, попутные нефтяные газы. [c.7]

    Простейшим из них является СН — метан, который впервые мог образоваться непосредственно из элементов в раскаленной атмосфере первичного уплотняющегося облака диффузноп материи. [c.33]

    Метан мог образоваться синтетически из элементов в раскаленной атмосфере первичного уплотняющегося облака диффузной материи аналогично первому из ниже описанных синтетических способов, а в условиях геологической предистории Земли — аналогично всем последующим способам, применяемым в технике и лабораториях  [c.35]

    СО,, , углеводороды и др.), попадая в атмосферу и взаимодействуя с другими веществаш, или под воздействием солнечной энергии, трансформируются в новые химические соединения, шга инициируют их образование. Вторичные загрязнители, образованные таким образом, оказываются зачастую более токсичными и, выпадая вместе с атмосферными осадками на почву и раститедьностъ, оказывают на них более губительное воздействие, нежели первичные газообразные загрязнители. Причем такое воздействие проявляется, как ЩМ1ВИЯО, не вблизи источников выделения в атмосферу первичных загрязнителей, а на расстояниях, достаточно удаленных от них. Это обстоятельство позволяет полагать, что достижение чистоты атмосферного воздуха в границах щюмышленного предприятия и его санитарно-защитной зоны может реально обеспечиваться за счет увеличения экологического риска в других районах, что по своей сути безнравственно, когда речь идет о среде обитания всего живого. [c.57]

    Указано на необходимость выполнения оценки воздействия возможных газообразных загрязнителей как для территории месторождения природного газа, находящейся на морской поверхности, так и для территории, расположенной на материковой части. Обращается внимание на существенные отличия структуры взаиморасположения технологических обьектов морских месторождений от месторождений на суше. Дан краткий обзор по механизму образования в атмосфере первичных и вторичных газообразных загрязнителей, и приведены примеры путей воздействия их на морские и сухопутные экосистемы. [c.246]

    Пирит (FeSa) ультрамафические породы, а также осадочные воды Порода, скарновые вольфрамовые отложения Вода, жилы олова, содержащие СаРг Природный газ, сульфидные руды Порода, первичные ореолы вокруг сульфидов Почва, вторичные ореолы рассеяния вокруг сульфидов Природный газ, атмосфера, первичные ореолы вокруг сульфидов [c.111]

    Фотосинтез — единственный из всех типов химических реакций (терм ических, каталитических, ферментативных, радиационных и фо— тохимических), позволяющий при мягких термобарических параметрах б o фepы осуществить невероятную, с точки зрения термодинамики химическую реакцию, протекающую с увеличением свободной энергии. Он обеспечивает прямо или косвенно доступной химической энергией все земные организмы и, как будет показано ниже, является источником образования горючих ископаемых. Обратный фотосинтезу процесс представляет собой знакомую всем нам химическую реак1,,ию горения твердых, жидких и газообразных горючих ископаемых с выделением большого количества энергии. Следовательно, растительный и животный мир, а также органические горючие ископаемые Земли есть не что иное как аккумулированная энергия Солнца На современном этапе эволюции Земли ежегодно в результате фотосинтеза образуется 150 млрд. т органического вещества, усваивается 300 млрд. т СО и выделяется около 200 млрд. т свободног о кислорода. Благодаря только фотосинтезу в первичной атмосфере Земли появился кислород, возник озоновый экран, создались условия для биологической деятельности. При гибели организма происходит обратный процесс [c.43]

    Прочие реакции. Дегидрокскметилированио первичных спиртов может быть использовано для получения из кислот легко очищаемых циклопентановых углеводородов [113]. Выход метилциклопентана из спирта получается высокий, и этот метод является общим для первичных спиртов. По этому способу спирт нагревают при 190°, при давлении 100 ат в атмосфере водорода в присутствии катализатора никель на кизельгуре  [c.461]

    Дымовые газы перед выбросом их в атмосферу проходят очистку в циклонах НИИОГАЗ ЦН-15. Замер темнературы и разрежения в шахте предусмотрен на трех горизонтах. Кроме этого, предусмотрен замер температуры отходящих газов и разрежения на верху печи. Подача газа и первичного воздуха производится в двух ярусах через специальные балки, охлаждаемые водой. На каждом ярусе установлено по две балки, причем направление балок одного горизонта перпендикулярно к направлеппю балок другого. На каждом горизонте предусмотрено но шесть периферийных газовых вводов для возможности подачи незначительного количества газов. [c.188]

    Типовой бездымный непахнущий мусоросжигатель состоит из первичной камеры сжигания, оборудованной загрузочным (для отходов) окном с дверцей, газовой горелкой, колосниковой решеткой, на которую укладывают уничтожаемые отходы, и поддоном для сбора золы и несгоревших материалов. Газообразные продукты сгорания (при температуре около 1000 °С) направляются во вторую камеру дожигания, которая также оборудована горелкой. Здесь они дожигаются, а затем после разбавления воздухом выбрасываются в атмосферу. Для обеспечения нормальной работы мусоросжпгателей необходимо, чтобы избыток воздуха составлял 100 %, что достигается за счет естественной илн искусственной тяги. [c.208]

    Обширный обзор экспериментальных установок, необходимых для исследования напряженных волокон в ЭПР-резонаторе, содержится в работе Рэнби и др. [2]. Эти установки значительно более сложные, чем аппаратура для исследования порошков, хотя требования по регулированию температуры и атмосферы, окружающей образец в резонаторе, почти те же самые. Известны рычажные и гидравлические системы нагружения с сервомеханизмами [29, 37, 44, 60], с помощью которых запрограммированная по определенному закону нагрузка и деформация могут быть приложены к пучкам волокон (или другим растягиваемым образцам) непосредственно в резонаторе. Необходимо, чтобы растяжение упругих образцов проводилось в таком температурном режиме, при котором можно легко наблюдать спектры свободных радикалов. Для термопластичных волокон этот режим соответствует температура.м 200—320 К предварительно ориентированные волокна каучуков необходимо испытывать при температурах 93—123 К- При этих температурах первичные свободные радикалы достаточно подвижны, чтобы быстро вступать в реакции с атомными группами своей или других цепных молекул, с абсорбированными газами, примесями или включениями, действующими в качестве лову- [c.182]

    Газовый разряд в трубках с полым катодом. В т оках с полым катодом эмиссионный спектр материала катода получается при электрическом тлеющем разряде. Этот разряд осуществляют в атмосфере инертного газа при пониженном давлении (3—5 мм рт. ст.), и так как в этом случае допплеровское уширение, а также уширение за счет столкновений уменьшаются, в спектре получаются чрезвычайно тонкие линии. Поэтому трубки с полым катодом применяют в качестве первичных излучателей при наблюдении резонансного поглощения. Обычно для каждого элемента требуется специальная трубка. [c.189]

    Поскольку реактивы Гриньяра взаимодействуют с водой (реакция 12-22) и с кислородом (реакция 12-23), их лучше всего получать в атмосфере азота, не содержащей следов влаги. Реактивы Гриньяра обычно не выделяют и не хранят, а полученный раствор сразу же используют для нужного синтеза. Реактивы Гриньяра можно также готовить в бензоле или толуоле, добавляя третичный амин, образующий комплекс с RMgX [325]. Этот метод позволяет избежать употребления эфира в качестве растворителя. В случае некоторых первичных алкилгалогенидов можно даже приготовить алкилмагниевые соединения в углеводородных растворителях в отсутствие органического основания [326]. [c.466]

    I) Древнейшая атмосфера Земли, по-видимому, не содержала свободного кислорода. Можно предполагать, что первичное его появление было обусловлено происходящим под действием ультрафиолетовых лучей Солнца разложением молекул водяного пара по общей схеме 2НгО = 2Нг + О2. Возникавший таким путем водород уходил вверх, а главная масса кислорода расходовалась на взаимодействие со способными [c.48]


Смотреть страницы где упоминается термин Атмосфера первичная: [c.461]    [c.966]    [c.142]    [c.239]    [c.283]    [c.26]    [c.208]    [c.193]    [c.200]    [c.186]    [c.38]    [c.39]    [c.14]    [c.188]    [c.261]    [c.130]    [c.274]   
Происхождение жизни Естественным путем (1973) -- [ c.13 , c.14 , c.74 , c.76 , c.85 , c.91 , c.96 , c.106 , c.118 , c.126 , c.129 , c.151 , c.203 , c.204 , c.213 , c.221 , c.223 , c.236 , c.237 , c.254 , c.268 , c.281 , c.284 , c.291 , c.304 , c.309 , c.322 , c.325 , c.353 , c.368 , c.381 , c.385 ]




ПОИСК





Смотрите так же термины и статьи:

АНАЛИЗ УСТАНОВОК ПЕРВИЧНОЙ ПЕРЕРАБОТКИ. НЕФТИ КАК ИСТОЧНИКА ЗАГРЯЗНЕНИЯ АТМОСФЕРЫ

Атмосфера

МЕРОПРИЯТИЯ ПО СНИЖЕНИЮ ЗАГРЯЗНЕНИЯ ВОЗДУШНОЙ АТМОСФЕРЫ НА УСТАНОВКАХ ПЕРВИЧНОЙ ПЕРЕРАБОТКИ НЕФТИ

От первичной атмосферы к первичному бульону

Формальдегид первичной атмосфере

ХАРАКТЕРИСТИКА УСТАНОВОК ПЕРВИЧНОЙ ПЕРЕГОНКИ НЕФТИ КАК I ИСТОЧНИКА ЗАГРЯЗНЕНИЯ АТМОСФЕРЫ



© 2024 chem21.info Реклама на сайте