Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Нормальные пролиферация

    Известны сотни генов, мутации в которых могут способствовать превращению нормальной клетки в опухолевую, — это протоонкогены. Протоонкоген — ген, содержащий информацию о белке, регулирующем нормальную пролиферацию клеток, и способный в результате изменения структуры превращаться в онкоген. Онкоген — ген, экспрессия которого приводит к неконтролируемой пролиферации. Для превращения протоонкогена в онкоген требуются какие-либо изменения в его регуляторной или структурной части. [c.306]


    Нарушения нормальной пролиферации нейтрофилов в костном мозгу приводят к нейтропении. Это может быть результатом рас- [c.75]

    Существование гомеостатического контроля клеточной пролиферации в печени бьшо четко продемонстрировано в опытах, в которых значительную часть гепатоцитов удаляли хирургическим путем или же вызывали их гибель, вводя животному четыреххлористый углерод. Примерно через сутки после такого повреждения в популяции оставшихся гепатоцитов возникает волна клеточных делений, и утраченная ткань очень быстро замещается. Например, если удалить у крысы две трети печени, то оставшаяся часть регенерирует до нормальных размеров приблизительно за неделю. В подобных случаях сигнал для регенерации печени можно обнаружить в крови если у двух крыс хирургическим путем создать перекрестное кровообращение н у одной из них удалить две трети печени, то митотическая активность будет индуцирована и в неповрежденной печени второй крысы. Что это за фактор в крови и как он действует, пока неизвестно. Сходные явления регенерации наблюдаются в почках, имеющих, по-видимому, аналогичную систему управления ростом. [c.146]

    Пролиферацию эндотелиальных клеток можно продемонстрировать путем мечения клеток в фазе 8 [ Н]-тимидином. В нормальных сосудах доля эндотелиальных клеток, включающих метку, особенно высока в местах разветвления артерий, где турбулентность потока крови ускоряет износ эндотелиальных клеток и тем самым, по-видимому, стимулирует их обновление. В целом, однако, эндотелиальные клетки обновляются довольно медленно ежедневно заменяется примерно одна клетка из сотни. [c.148]

    Возникновение злокачественных (раковых) опухолей может иметь различные причины, однако во всех случаях к этому причастен генетический материал клетки-ее ДНК. Что бы ни привело к образованию опухоли (раковому перерождению), последующим ростом ткани управляет ДНК безудержно делящихся опухолевых клеток. В основе превращения нормальной клетки в злокачественную-опухолевой трансформации — лежит перенос или иное изменение ДНК. Агент, вызывающий пролиферацию клеток,-это продукт гена. До сих пор, правда, не удается создать общую теорию, которая охватывала бы все формы ракового перерождения, однако изучение злокачественных опухолей, вызванных вирусами и плазмидами, уже сейчас позволяет сделать далеко идущие выводы. [c.151]

    Установлено, что вдувание воздуха в желудочки мозга, люмбальная пункция, энцефалография сопровождаются лейкоцитозом. Уже через 30 минут после закрытой травмы черепа у больных появляется отчетливый нейтро-фильный лейкоцитоз с увеличенной пролиферацией и ускоренным созреванием нейтрофилов в костном мозгу. Эти изменения наблюдаются до развития инфекции при нормальной температуре и нормальной РОЭ (Т. А. Ряж-кин). [c.6]


    Конкуренция за факторы роста и питательные вещества - не единственный фактор, влияющий на скорость деления в клеточной культуре Форма клеток во время их распластывания и движения по поверхности субстрата на свободные места тоже сильно влияет на их способность делиться. При культивировании нормальных клеток в суспензии, когда они не прикреплены к твердой поверхности и поэтому имеют округлую форму, они почти никогда не делятся (зависимость деления от прикрепления). Влияние распластывания клеток на пролиферацию можно продемонстрировать при выращивании клеток на субстратах с различной адгезивностью поверхности или на таких субстратах, где имеются лишь крошечные адгезивные участки, на которых клетка может прикрепиться, но не может распластаться Частота деления клеток возрастает с увеличением степени их распластывания. Возможно, что сильно распластанные клетки могут улавливать больше молекул фактора роста и поглощать больше питательных веществ благодаря своей большей поверхности. Однако некоторые типы клеток (например, клетки ЗТЗ), почти не способные к пролиферации в суспензии, охотно делятся, как только им удается вступить в контакт с участком субстрата, даже если этот участок настолько мал, что клетка не может на нем распластаться (рис. 13-28). Такие фокальные контакты являются местами соединения (хотя и непрямого) внутриклеточных актиновых филаментов с молекулами внеклеточного матрикса (разд. 11.2.8). Эти и другие наблюдения определенно наводят на мысль, что контроль клеточного деления каким-то образом связан с организацией цито- [c.420]

    У млекопитающих и птиц большинство нормальных клеток проявляет поразительную несклонность делиться неопределенно долго. Это отличает их от стабильных культивируемых клеточных линий, таких как ЗТЗ, в которых, видимо, произошли какие-то генетические изменения, делающие их бессмертными . Например, фибробласты, взятые от человеческого плода, при выращивании в стандартной среде осуществляют только около 50 удвоений популяции к концу этого периода пролиферация замедляется и затем останавливается, и все клетки, пробыв некоторое время в состоянии покоя, погибают. Такие же клетки, взятые от 40-летнего человека, перестают делиться примерно после 40 удвоений, а от 80-летнего - примерно после 30 удвоений. Фибробласты от животных с более короткой продолжительностью жизни прекращают деление в культуре после меньшего числа циклов. По аналогии со старением организма в целом это было названо клеточным старением. Клеточное старение представляет собой загадочный феномен. Короткие запрограммированные серии клеточных делений, которые заканчиваются дифференцировкой, -характерная особенность эмбрионального развития разд. 16.3.4), однако трудно представить себе, как клетки могли бы в течение долгого времени отсчитывать свои митотические циклы и останавливаться, пройдя, скажем, 50 делений. Согласно одной из теорий, клеточное старение - это результат катастрофического накопления самовоспроизводящихся ошибок биосинтетических механизмов клетки эти ошибки несущественны в природных условиях, где большинство животных гибнет от других причин задолго до того, как у них подвергнется старению значительное число клеток. С этой точки зрения клеточное старение просто отражает черты несовершенства в физиологии клетки, которые вполне естественны при очень слабом давлении отбора, направленного на их элиминацию. Однако в этом случае необходимо было бы объяснить, каким же образом клетки зародышевого пути, бессмертные клетки культивируемых линий и даже обычные соматические клетки при некоторых специальных условиях (описанных ниже) способны к бесконечной пролиферации. Другая гипотеза состоит в том, что клеточное старение-это результат механизма, который выработался для защиты от рака путем ограничения роста опухолей. Однако подобная защита представлялась бы неэффективной, так как пятидесяти циклов деления вполне достаточно [c.423]

    Какова бы ни была функция клеточного старения, есть много данных о гом, что на этот процесс сильно влияют факторы внеклеточной среды. Папример, эпидермальные клетки из кожи ребенка стареют примерно после 50 циклов деления, если в среде отсутствует фактор роста эпидермиса, и после 150 циклов, если этот фактор имеется. Бессмертные клетки ЗТЗ проявляют признаки старения при недостатке факторов роста. Клетки от нормальных мышиных эмбрионов могут продолжать делиться бесконечно без малейших признаков старения, если их поместить в химическую среду определенного состава, содержащую вместо сыворотки набор очищенных факторов роста добавление же сыворотки приводит к остановке пролиферации. Это позволяет предположить, что старение частично обусловлено какими-то компонентами сыворотки, которые тормозят пролиферацию клеток, перевешивая действие факторов роста. [c.424]

    Клеточное деление у многоклеточных животных зависит от сложных социальных регуляторных механизмов, и пролиферация различных типов клеток контролируется различными сочетаниями белковых факторов роста. Они действуют в очень малых концентрациях, и многие из них служат локальными химическими медиаторами, позволяющими регулировать плотность клеточной популяции. Кроме того, большинство нормальных клеток неспособно делиться без прикрепления к внеклеточному матриксу. При недостатке факторов роста или при невозможности прикрепиться к матриксу клетки останавливаются после митоза, переходя в особое состояние покоя —Со из которого после добавления факторов роста они могут выйти лишь через несколько часов. Когда клетка вышла из состояния Со и прошла точку рестрикции в она быстро проходит фазы 8, 02 и М независимо от прикрепления или факторов роста. В пролиферирующей клеточной популяции переход через точку рестрикции представляет собой событие типа всё или ничего , которое, подобно радиоактивному распаду, характеризуется определенной вероятностью осуществления. В дополнение к непосредственному контролю клеточной пролиферации существуют еще долговременные механизмы, приводящие к старению и прекращению деления нормальных соматических клеток млекопитающих в культуре после ограниченного числа циклов деления. [c.425]


Рис. 13-38. Общая природа сигналов социального контроля, воздействующих на нормальные и трансформированные клетки. В обоих случаях различные факторы роста (обозначенные здесь цифрами 1, 2 и 3) действуют совместно, поднимая клетку из Со в пролиферативное состояние. Поскольку трансформированная клетка поддерживается в положении, близком к границе перехода (цветная линия), она может часто стимулироваться к пролиферации только одним фактором роста (или очень низкой концентрацией смеси факторов роста). Однако, как отмечалось в тексте, есть существенная разница в эффекте прикрепления (обозначенном шкА) между этими двумя типами клеток для пролиферации нормальных клеток прикрепление необходимо, тогда как у трансформированных клеток оно скорее тормозит пролиферацию Рис. 13-38. <a href="/info/1500872">Общая природа</a> сигналов <a href="/info/200150">социального контроля</a>, воздействующих на нормальные и трансформированные клетки. В обоих случаях <a href="/info/30348">различные факторы</a> роста (обозначенные здесь цифрами 1, 2 и 3) <a href="/info/355154">действуют совместно</a>, поднимая клетку из Со в пролиферативное состояние. Поскольку трансформированная <a href="/info/1396368">клетка поддерживается</a> в положении, близком к <a href="/info/334754">границе перехода</a> (цветная линия), она может часто стимулироваться к пролиферации только одним <a href="/info/91103">фактором роста</a> (или <a href="/info/484117">очень низкой</a> <a href="/info/714310">концентрацией смеси</a> <a href="/info/91103">факторов роста</a>). Однако, как отмечалось в тексте, есть существенная разница в эффекте прикрепления (обозначенном шкА) <a href="/info/1915927">между этими</a> двумя типами клеток для пролиферации нормальных клеток прикрепление необходимо, тогда как у трансформированных клеток оно скорее тормозит пролиферацию
    Структура позиционных значений у многих животных тесно связана с контролем клеточной пролиферации по простому правилу интеркаляции. Это правило было сформулировано при изучении регенерации конечностей у насекомых и амфибий. Оно гласит, что нарушение непрерывности позиционных значений вызывает местную пролиферацию клеток, и вновь возникающие клетки приобретают промежуточные позиционные значения, восстанавливающие непрерывность нарушенной структуры. Этот же механизм может функционировать при нормальном развитии зародыша, восстанавливая неточности исходных характеристик позиционной информации. [c.109]

    Наше обсуждение контроля нормальной пролиферации клеток позвоночных приводит к парадоксу. С одной стороны, ясно чтобы выйти из состояния Со и начать делиться, нормальные клетки должны формировать адгезивные контакты с субстратом (адгезия между клетками и матриксом). Это наводит на мысль, что трансмембранные белки, связывающие клетки с внеклеточным матриксом (включая рецептор фибронектина и другие белки группы интегринов), создают некий [c.433]

    Среди перечисленных характеристик нет нн одной, которую можно было бы строго доказательно отнестн к специфическим признакам опухолевого роста. Все эти изменения обусловлены повышенной интенсивностью клеточной пролиферации. В условиях нормальной пролиферации они обратимы. Изменения не являются ведущими в онухолево трансформации и в малигнизации, а служат (Ьупкциопальпым отражением или сопутствующим фоном реакций исполнительного аппарата клетки в ответ на регулирующие пролиферацию сигналы и изменения окружающей ее среды. [c.84]

    Адгезия клеток-предшественников к внеклеточному матриксу является ключевой фазой для этапов нормальной пролиферации и дифференцировки клеток [241]. Недавно описанный белок матрикса, гемонектин, представляется крайне важным фактором для [c.12]

    К основным механизмам стимуляции роста растений микроорганизмами прямого действия относятся 1) фиксация атмосферного азота, который затем используется растением 2) образование легкоусваиваемых форм железа и фосфора и/или поглощение из почвы и доставка этих полезных минеральных веществ в растения 3) синтез фитогормонов, вызывающих пролиферацию растительных клеток. Опосредованная стимуляция роста растения каким-либо щтаммом полезного микроорганизма проявляется через предотвращение роста фитопатогенного почвенного микроорганизма, который мог бы отрицательно влиять на нормальный рост и развитие растения. Такое действие называется антибиозом и может заключаться либо в истощении полезным микроорганизмом лимитирующего субстрата, либо в синтезе и секреции соединения, препятствующего росту фитопатогена. [c.306]

    Правило роста, согласно которому разрывы в ряду позиционных значений вьпывают местную пролиферацию клеток, можно рассматривать как следствие более общего правила появление чрезмерно крутых градиентов позиционных значений всегда вызывает локальный рост. Это последнее правило позволяло бы понять, почему при интеркалярной регенерации рост после до-стижения надлежащих конечных размеров прекращается. Оно могло бы также быть основой простого механизма регуляции роста при нормальном развитии из этого правила следует, что структура с определенной картой позиционных значений, заложенная первоначально в малом масштабе, должна расти до тех пор, пока градиенты позиционных значений в ней не станут достаточно пологими-такими, как во взрослом организме. Это позволило бы, например, объяснить, как контролируются размеры компартментов у дрозофилы (см. разд. 15.4.14). [c.110]

    В то время как контакт с базальной мембраной может определять выбор между выживанием клетки в качестве стволовой и ее гибелью в результате терминальной дифференцировки, другие факторы должны регулировать скорость образования новых эпидермальных клеток. Предполагается, что в этом участвуют различные гормоны и факторы роста (разд. 13.1.7). Например, если внешние слои эпидермиса соскоблить, то скорость деления базальных клеток увеличивается. Через некоторое время это приводит к восстановлению нормальной толщины эпидермиса, и скорость деления в базальном слое снова снижается до обычного уровня. Все происходит так, как будто деляпшеся клетки базального слоя освобояадаются от ингибирующего влияния наружных дифференцированных слоев после нх удаления, а затем вновь начинают испытывать это влияние, как только эпидермис полностью восстанавливается, Согласно одной из гипотез, в эпидермисе синтезируется фактор, называемый эпидермальным халоном (или кейлоном), который подавляет митозы в базальных слоях настолько, чтобы скорость образования дифференцированных клеток соответствовала потребности. Последствия нарушенной регуляции размножения базальных клеток можно наблюдать при псориазе. При этом распространенном заболевании кожи скорость пролиферации базальных клеток значительно повьШ1ена, эпидермис становится утолщенным и клетки слущиваются с поверхности кожи уже через неделю после их образования в базальном слое, еще не успев подвергнуться полному ороговению. [c.157]

    Большинство антигенов вызывает в организме образование целого набора антител, но каждый отдельно взятый лимфоцит продуцирует лишь одно из них. Миеломы — это злокачественные новообразования иммунной системы они развиваются в результате неконтролируемой пролиферации одной линии лимфоцитов. При этом в больших количествах синтезируется один тип белков-антител. Иными словами, миеломы являются природными продуцентами моноклональных антител. По методу Миль-штейна проводят слияние нормальных (неопухолевых) лимфоцитов и клеток миеломы. Вначале полученные гибриды синтезируют смесь антител, включающую два типа антител родительских клеток, а также гибридные их формы, образующиеся путем ассоциации тяжелых и легких цепей антител двух родительских форм. Впоследств ии в результате элиминации хромосом образуются клетки, способные к синтезу антител лишь одного типа. Это могут быть либо антитела, закодированные в геноме лимфоцита, либо антитела, характерные для клеток миеломы. Скрининг и обнаружение клона, синтезирующего искомое антитело, ведут при помощи биохимических и иммунохими-ческих методов. Схема этого метода дана на рис. 7.5. [c.313]

    Предположение, что желтое тело представляет собой железу внутренней секреции, было впервые высказано Френкелем (1903 г.)" показавшим, что удаление желтого тела у крольчих вскоре после овуляции препятствует имплантации яичка или приводит к выкидышу. В 1928 г. Корнер и Аллен сделали важное наблюдение, что в случае удаления желтого тела в ранней стадии беременности плод удается сохранить введением экстрактов желтых тел. У крольчкх, кастрированных вскоре после оплодотворения, которым затем подкожно вводили подобные экстракты, через несколько дней наблюдались все изменения, характерные для ранней стадии беременности. Происходила имплантация оплодотворенного яичка, и беременность и роды протекали нормально. Эти опыты показали, что желтое тело выделяет гормон, регулирующий процесс беременности. Корнер и Аллен разработали удобный метод определения активности гормональных препаратов. Половозрелым крольчихам, кастрированным после оплодотворения, в период созревания фолликулы вводят испытуемый гормональный препарат. На пятый день наблюдается характерная для ранней стадии беременности пролиферация слизистой оболочки матки, легко обнаруживаемая гистологическим исследованием. Клауберг разработал несколько видоизмененный тест °, при котором отпадает необходимость в кастрации и гистологическом контроле. Для предварительной стимуляции матки неполовозрелым крольчихам в течение шести-восьми. [c.364]

    Sin lair [з] заявил, что в дополнение к малым колониям, образовавшимся из облученных клеток, он также выделил небольшие медленно растущие клоны, возникшие из популяции нормальных не подвергавшихся облучению клеток хомяка. Их свойства и повышенная чувствительность к облучению были весьма сходны с такими же качествами малых клонов, образовавшихся после облучения. Эти и другие признаки позволяют отрицать возможность, что различие в чувствительности обусловлено резидуальным радиационным повреждением. Со времени симпозиума в olorado Springs были получены доказательства, что плоидность per se не влияет на чувствительность к облучению, но клетки с низкой способностью к пролиферации всегда более чувствительны. [c.175]

    Методы генетики соматических клеток растений имеют много важных приложений, поскольку растительные клетки в культуре в отличие от клеток животных обладают очень важным свойством-из одной растительной клетки можно получить целое растение. У животных линия клеток, которые затем образуют гаметы, отделяется от соматических клеток на ранних этапах индивидуального развития особи. По мере этого развития соматические клетки специализируются, при этом они теряют способность при делении восстановить целую особь. У растений генеративные клетки не существуют в виде отдельной клеточной суб-по-пуляции цветок формируется из неспециализированных соматических клеток. Тотипотентность растительных клеток, выращенных в культуре, была впервые показана в 1958 г. Одиночная клетка моркови при пролиферации давала массу недифференцированных клеток, так называемый каллус, которые на среде, содержащей растительные гормоны, подвергались дифференцировке, образуя корни и стебель. На стебле формировались цветы и затем семена. Из этих семян затем вырастали нормальные растения. [c.329]

    Первая тирозиновая протеинкиназа была открыта в 1979 г. Это был не поверхностный клеточный рецептор, а внутриклеточный продукт вирусного онкогена - белок, названный ррбО v-sr (разд. 13.4.2). Первым рецептором, у которого обнаружили тирозинкиназную активность (в 1982 г.), был рецептор для EGF. Несколькими годами позже выяснилось, что вирусный онкоген егЪВ кодирует урезанный вариант рецептора для EOF. Этот урезанный белок потерял EGF-связывающий наружный домен, но сохранил внутриклеточный домен с тирозинкиназной активностью, и поэтому клетки с такими дефектными рецепторами ведут себя гак, как будто на них постоянно действует сигнал к пролиферации Позднее выяснилось, что онкоген пей, активный в некоторых химически индуцированных опухолях нервной системы у крыс, кодирует аномальный рецептор, являющийся тирозиновой киназой, хотя природа лиганда (предположительно это ростовой фактор) для нормального рецептора не установлена. В этом случае аномальный и нормальный рецепторы различаются только по одному аминокислотному остатку в единственном трансмембранном сегменте белка. Такого изменения оказалось достаточно, чтобы сделать тирозиновую киназу постоянно активной. Эти исследования подчеркивают важную роль тирозиновых киназ в контроле клеточной пролиферации. [c.370]

    Между онкогенами и нормальными путями передачи сигнала к пролиферации было обнаружено немало и других связей. Онкоген sis, например, кодирует функционально активную субъединицу PDGF, а онкоген егЪА - измененную форму рецептора тиреоидного гормона. Как мы будем более подробно обсуждать в гл. 13, исследование онкогенов открывает перспективный путь к выявлению и пониманию целого спектра механизмов, с помощью которых пролиферативные сигналы достигают своей цели. [c.370]

    При изучении клеточного цикла in vitro в большинстве случаев используются стабильные клеточные линии (разд. 4.3.4), способные размножаться неопределенно долго. Это линии, специально отобранные для поддержания в культуре многие из них - гак называемые нетрансформированные клеточные линии - широко используются в качестве моделей пролиферации нормальных соматических клеток. [c.416]

    С помощью таких факторов роста, как PD F, клетки одного типа могут контролировать пролиферацию клеток другого типа. Но важно и то, что клетки одного и того же типа в ткани взаимодействуют друг с другом и согласовывают скорость деления, чтобы поддерживать надлежащую плотность популяции. Социальный контроль такого рода четко проявляется при реакциях на повреждение. Например, когда поврежден эпителий, клетки по краям раны стимулируются к делению (см. рис. 13-23) и наползанию на обнаженную поверхность до тех пор, пока она вновь не будет закрыта в этот момент быстрая пролиферация и движение клеток прекращаются. Сходное явление можно наблюдать на диссоциированных клетках в культуре. Эпителиальные клетки или фибробласты, помещенные в чашку, в присутствии сыворотки будут приклеиваться к поверхности, распластываться и делиться до тех пор. пока не образуется сплошной монослой в котором соседние клетки соприкасаются. Носле этого нормальные клетки перестают делиться-явление, известное как торможение пролиферации, зависимое от плотности. Если такой монослой поранить иглой таким образом, чтобы на [c.419]

Рис. 13-39. Гипотетическая схема, объясняющая наблюдаемую зависимость пролиферации нормальных и трансформированных клеток от адгезии между клетками и матриксом. Главное внимание уделяется двум типам молекул 1) цитоплазматическому белку, который служит внутриклеточным сигналом к делению, и 2) трансмембранному линкерному белку, который может связываться как с цитоплазматической сигнальной молекулой по одн) сторону клеточной мембраны, так и с внеклеточным матриксом по другую сторону. Это связывание -кооперативный проиесс, так что сигнальные молекулы, связавшиеся с линкерным белком внутри клетки, стабилизируют трансмембранную структуру и способствуют ее связыванию с внеклеточным матриксом и наоборот, связывание с внеклеточным матриксом способствует связыванию сигнальных молекул с линкерным белком внутри клетки. Чтобы клетка получила сигнал к делению, сигнальные молекулы должны быть несвязанными в цитоплазме и находиться в активной конформации, в которой они менее прочно связываются с линкерным белком Предполагается, что сигнальные молекулы активируются при их фосфорилировании, которое происходит благодаря киназной активности Рис. 13-39. <a href="/info/1388154">Гипотетическая схема</a>, объясняющая наблюдаемую зависимость пролиферации нормальных и трансформированных клеток от <a href="/info/527709">адгезии между</a> клетками и матриксом. Главное внимание уделяется двум <a href="/info/400560">типам молекул</a> 1) <a href="/info/1324138">цитоплазматическому белку</a>, который <a href="/info/1886427">служит внутриклеточным</a> сигналом к делению, и 2) трансмембранному линкерному белку, который может связываться как с цитоплазматической <a href="/info/508928">сигнальной молекулой</a> по одн) сторону <a href="/info/4417">клеточной мембраны</a>, так и с <a href="/info/283177">внеклеточным матриксом</a> по другую сторону. Это связывание -кооперативный проиесс, так что <a href="/info/508928">сигнальные молекулы</a>, связавшиеся с линкерным белком <a href="/info/1409039">внутри клетки</a>, стабилизируют трансмембранную структуру и способствуют ее связыванию с <a href="/info/283177">внеклеточным матриксом</a> и наоборот, связывание с <a href="/info/283177">внеклеточным матриксом</a> <a href="/info/1435433">способствует связыванию</a> <a href="/info/508928">сигнальных молекул</a> с линкерным белком <a href="/info/1409039">внутри клетки</a>. Чтобы <a href="/info/1406629">клетка получила</a> сигнал к делению, <a href="/info/508928">сигнальные молекулы</a> <a href="/info/1633404">должны быть</a> несвязанными в цитоплазме и находиться в <a href="/info/1377342">активной конформации</a>, в которой они менее <a href="/info/1435757">прочно связываются</a> с линкерным белком Предполагается, что <a href="/info/508928">сигнальные молекулы</a> активируются при их фосфорилировании, <a href="/info/1481749">которое происходит</a> благодаря <a href="/info/1406783">киназной</a> активности

Смотреть страницы где упоминается термин Нормальные пролиферация: [c.171]    [c.506]    [c.511]    [c.85]    [c.88]    [c.182]    [c.75]    [c.89]    [c.179]    [c.334]    [c.113]    [c.319]    [c.367]    [c.421]    [c.423]    [c.434]    [c.438]    [c.79]    [c.80]    [c.108]    [c.162]    [c.165]   
Иммунология (0) -- [ c.11 ]




ПОИСК







© 2025 chem21.info Реклама на сайте