Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Концентрирование электрохимическое

    Нарушение количественных соотношений теории Аррениуса из-за пренебрежения ион-ионным взаимодействием проявляется также в том, что различные методы определения степени диссоциации а дают несовпадающие результаты. Так, а можно рассчитать по уравнению (1.6), зная изотонический коэффициент Вант-Гоффа. Далее, поскольку электропроводность раствора зависит от концентрации свободных ионов и, следовательно, от степени диссоциации, то а можно определить по измерению электропроводности. Наконец, как следует из электрохимической термодинамики разность потенциалов на концах равновесной электрохимической цепи связана с концентрацией ионов, участвующих в установлении электрохимического равновесия. Поэтому иногда степень диссоциации а можно рассчитать по измерению разности потенциалов соответствующей цепи. Расхождения в величинах а, рассчитанных тремя указанными методами, оказываются весьма существенными, особенно для растворов сильных электролитов. Для концентрированных растворов сильных электролитов последний метод иногда приводит к не имеющим физического смысла значениям а> 1. [c.20]


    Перенапряжение перехода возникает тогда, когда наиболее медленной стадией электродного процесса является собственно электрохимическая реакция (разряд, ионизация). Основы теории перенапряжения перехода в 1930—1940 гг. были предложены М. Фольмером, Т. Эрдей-Грузом, А. Н. Фрумкиным и другими в применении к процессу выделения водорода в более поздних работах была дана общая теория этого вида перенапряжения. Теория Фольмера и Эрдей-Гру-за разработана для концентрированных растворов электролитов при отсутствии специфической адсорбции поверхностно-активных веществ на электродах. Она основана на общих положениях химической кинетики, устанавливающих зависимость между скоростью реакции и энергией активации. Однако для электрохимических процессов следует учитывать зависимость энергии активации от потенциала электрода. Рассмотрим теорию перенапряжения перехода в применении к катодной реакции Ох + ге" Red. Скорость этой реакции равна разности скоростей прямой реакции восстановления и обратной — окисления. Скорость каждой из них описывает уравнение [c.505]

    Электролиз можно применять для выделения следовых количеств элементов, стоящих в ряду напряжений дальше, чем элемент матрицы или другие мешающие определению компоненты. При этом можно провести кулонометрическое определение с одновременным электрохимическим отделением или выделить элемент электрохимически или химически, а затем применить другие методы анализа. После выделения следовых количеств элементов на проволоке из инертного тугоплавкого металла их можно определить эмиссионными методами, внося проволоку, например, в пламя. Электролиз можно также применить для отделения матрицы, если металл матрицы стоит в ряду напряжений дальше, чем элемент, содержащийся в следовых количествах. Такие выделения обычно осуществляют, проводя восстановление на ртутном катоде. Преимуществом использования ртутного катода по сравнению с электролитическим осаждением является то, что не происходит адсорбции следовых количеств элемента, т. е. определяемый элемент практически полностью остается в растворе, не содержащем ионов металла матрицы. Но с другой стороны, при этом не достигается концентрирование определяемого элемента. [c.422]

    Электрохимический процесс концентрирования тяжелой воды может быть осуществлен периодическим или непрерывным способом. [c.128]


    Такое разделение мембран, применяющихся при электродиализе, является относительным вследствие того, что изменение чисел переноса ионов в мембране зависит также от природы электролита и концентрации раствора, которая изменяется в процессе электродиализа. С уменьшением концентрации электролита электрохимическая активность мембран возрастает, и, кроме того, мембраны электрохимически неактивные в концентрированных растворах могут оказаться электрохимически активными в разбавленных растворах. [c.225]

    Э. д. с. концентрированной электрохимической цепи первого рода равна [c.434]

    Это позволяет для реакции с участием металла пренебречь скоростью разряда ионов металла /м, а для реакции с участием водорода — скоростью ионизации водорода /н. Тогда при замедленности электрохимической стадии можно, пренебрегая величиной -ф (концентрированные растворы поверхностно-инактивных электролитов), написать [c.491]

    Электрохимические цепи могут содержать несколько электролитов, границам раздела которых соответствуют гальвани-потенциалы, называемые фазовыми жидкостными потенциалами. Для двух растворов с одинаковым растворителем такой потенциал называется диффузионным. В месте контакта двух растворов электролита КА, отличающихся друг от друга концентрацией, происходит диффузия ионов из раствора 1, более концентрированного, в раствор 2, более разбавленный. Обычно скорости диффузии катионов и анионов различны. Допустим, что скорость диффузии катионов больше скорости диффузии анионов. За некоторый промежуток времени из первого раствора во второй перейдет больше катионов, чем анионов. В результате этого раствор 2 получит избыток положительных зарядов, а раствор [c.472]

    Что касается органических суперэкотоксикантов как объектов эколого-аналитического мониторинга, то исключительно низкие концентрации этих веществ в природных средах и во многих случаях электрохимическая инертность в доступной области потенциалов являются основной причиной ограниченного применения вольтамперометрии в решении проблем контроля окружающей среды. По-видимому, самым эффективным способом увеличения аналитического сигнала, позволяющим на несколько порядков снизить нижнюю границу определяемых концентраций, является предварительное концентрирование органических микрокомпонентов на поверхности электрода, как и в случае рассмотренных выше неорганических токсикантов. Существует несколько способов концентрирования органических веществ. Среди них наибольшее применение находит адсорбция на электроде [4]. Это явление широко известно в вольтамперометрии, однако обычно его считают нежелательным и всячески стараются от него избавиться. Образование адсорбционных пленок мешает протеканию электрохимических процессов и осложняет интерпретацию результатов. Развитие направления, связанного с созданием [c.286]

    Несколько замечаний об электролитическом получении никеля с нерастворимым анодом. Из обзора электрохимических свойств никеля ( 2—7) видно, что 10—15 г/л являются предельным содержанием кислоты в растворе, при котором можно получать никель с более или менее высоким выходом по току. Поэтому электролитическое получение никеля с нерастворимым анодом осуществимо только при условии надежного диафрагмирования анода либо при непрерывной нейтрализации раствора закисью или карбонатом иикеля. Едва ли это экономически целесообразно ввиду значительного расхода щелочей. Однако применение концентрированных растворов хлористого никеля позволяет вести электролиз с нерастворимым анодом (графит или платинированный титан). При этом можно использовать аноды с коробками для собирания и отвода газообразного хлора и диафрагмы из пористого перхлорвинила. Электролит — проточный. [c.389]

    Скорость коррозионных процессов (как электрохимических, так и других) в значительной степени зависит от образования на поверхности металла окисных и других пленок. Напомним, что образование подобных пленок играет существенную роль в явлении пассивации металлов, сущность которого заключается в том, что некоторые металлы теряют свою активность после, например, обработки концентрированной азотной кислотой или после анодного окисления в соответствующих условиях. [c.274]

    Определение содержаний порядка 10 % и менее стало повседневной потребностью многих отраслей промышленности, поскольку содержание примесей на этом уровне стало определять качество продукции. Эти сложные задачи были решены путем использования новых методов разделения, концентрирования и определения. Наибольшее практическое значение приобрели экстракционные, хроматографические, оптические и электрохимические методы. Интенсивно развиваются в последнее время атомно-абсорбционная спектроскопия, рентгено-флуоресцентные и резонансные методы, кинетические методы анализа и некоторые другие. Современная аналитическая химия приобретает новые черты — она становится более экспрессной, точной, автоматизированной, способной проводить анализ без разрушения и на расстоянии. [c.12]


    Электрохимические цепи могут содержать несколько электролитов, границам раздела которых соответствуют гальвани-потенциалы, называемые фазовыми жидкостными потенциалами. Для двух растворов с одинаковым растворителем такой потенциал называется диффузионным. В месте контакта двух растворов электролита КА, отличающихся друг от друга концентрацией, происходит диффузия ионов из раствора 1, более концентрированного, в раствор 2, более разбавленный. Обычно скорости диффузии катионов и анионов различны. Допустим, что скорость диффузии катионов больше скорости диффузии анионов. За некоторый промежуток времени из первого раствора во второй перейдет больше катионов, чем анионов. В результате этого раствор 2 получит избыток положительных зарядов, а раствор —отрицательных. Поскольку растворы приобретают электрические заряды, то скорость диффузии катионов уменьшается, анионов увеличивается, и с течением времени эти скорости становятся одинаковыми. В стационарном состоянии электролит диффундирует как единое целое. При этом каждый раствор имеет заряд, и разность потенциалов, установившаяся между, растворами, соответствует диффузионному потенциалу. Расчет диффузионного потенциала в общем случае затруднителен. С учетом некоторых допущений Планком и Гендерсоном выведены формулы для расчета срд. Так, например, при контакте двух растворов одного и того же электролита с различной активностью (а > ап) [c.472]

    Электрохимические устройства для непрерывного превращения химической энергии системы топливо — окислитель в электрическую при непрерывном подводе реагентов называются топливными элементами. В водород-кислородном топливном элементе электроды из пористого графита погружают в концентрированный раствор щелочи (6—10 М КОН) и через один из них барботируют кислород, через другой — водород. [c.229]

    Следует указать, что в ряде случаев системы типа взвесей, коллоидных растворов, прямых концентрированных эмульсий показывают (в отношении электрохимической проницаемости) свойства, сходные с обычными мембранами. В дальнейшем мы остановимся на некоторых особенностях, присущих системам такого рода, которые были исследованы на нашей кафедре коллоидной ХИМ ИИ. [c.144]

    Кроме стекла для изготовления электрохимических ячеек часто используют политетрафторэтилен, или тефлон. Неудобство при работе с ячейками из тефлона связано с его непрозрачностью, а также со сравнительно легкой деформируемостью. Тефлон не является полностью химически инертным и может вступать во взаимодействие, например, с концентрированными амальгамами щелочных металлов. [c.7]

    Так, в чисто электрохимических процессах изменение концентрации исходного вещества, как правило, не сказывается на механизме реакции. Оно влияет лишь в тех случаях, когда приводит к изменению степени заполнения поверхности электрода специфически адсорбированным исходным органическим веществом или продуктом реакции, т. е. исключительно через адсорбцию. При наличии химических стадий проявляются закономерности химической кинетики в гомогенной фазе. Низкая концентрация исходного вещества в растворе неблагоприятна для протекания бимолекулярных реакций, ее повышение, напротив, способствует их осуществлению. По этой причине в сравнительно концентрированных растворах реагента часто имеет место взаимодействие продуктов реакции с исходным веществом, что сказывается на скорости электродного процесса и характере его конечных продуктов. [c.190]

    Особый интерес представляет сочетание экстракционного концентрирования и анодной полярографии с накоплением (АПН), когда одновременно осуществляется двойное концентрирование — электрохимическое и экстракционное. Такой метод называют экстракционной анодной полярографией с накоплением (ЭАПН). Таблиц 5. Библ. ИЗ назв. [c.397]

    Зависимость скорости коррозии металлов от pH растворов может быть осложнена образованием труднорастворимых защитных пленок (например, РЬ304 на свинце в Н2504 РеЗО на железе в концентрированной НаЗО ) или пассивированием (например, железа в 50—60%-ной НЫОд). Таким образом, для скорости электрохимической коррозии металлов в кислых растворах имеет существенное значение не только величина pH, но и природа кислоты. [c.343]

    Озон получается в ряде электрохимических процессов, например прн электролизе концентрированных растворов H IO4. Озон выделяется (совместно с О2) на аноде увеличению выхода Оз благоприятствует понижение температуры и уменьшенное давление. [c.437]

    По отношению к воде электрохимическая активность кобальта сравнительно нсЕелика стандартный электродный потенциал для процесса получения нона Со + при действии воды на кобальт составляет — 0,277 В. Кобальт ие выделяет водород из воды нри обычной температуре, а при высокой — выделяет, разлагая водяные нары, Раст[ оррзг неокисляющих кислот взаимодействуют с кобальтом с выделением водорода и образованием солей кобальта (П). Концентрированные серная (при нагревании) и азотная кислоты окисляют кобальт. При действии разбавленной азотной кислоты па кобальт образуется нитрат кобальта (П), а восстановление азота идет до N0 или ЫгО. Растворы щелочей на кобальт ие действуют. [c.312]

    Электрохимическая активность никеля по отношению к воде.и кислотам невелика стандартный электродный потенциал для процесса Ni5 Ni2+ + 2e составляет — 0,250 В. При обычной температуре никель не выделяет водород из воды. Растворы неокисляю-идих кислот медленно реагируют с никелем с выделением водорода и образованием солей никеля (И). Азотной кислотой, как разбавленной, так и концентрированной, никель постепенно окисляется. Концентрированной серной кислотой окисляется при нагревании. Растворы щелочей на никель не действуют. [c.316]

    Григоров О. Н., Свердлова Н. С., Башенова А. В., Вестн. ЛГУ. Сер. физ.-хим., 23, № 10, 94 (1968). Электрохимическая активность концентрированных эмульсий, стабилизированных твердыми эмульгаторами. [c.415]

    Свердлова Н. С., Григоров О. Н., Вестн.- ЛГУ. Сер. физ.-хим., 23, № 16, 133 (1968). Электрохимическое поведение концентрированных эмульсий керосина в воде, стабилизированных желатиной. [c.415]

    Наиболее перспективными из физико-химических методов являются обратный осмос, ультрафильтрация, тонкопленочное испарение или электрохимические методы разрушения эмульсионных СОТС, а также совмещение их с реагентными способами [92, 289]. Представляет интерес способ интенсификации технологии мембранного разделения, основанный на магнитоожижении магнитных металлокерамических тел, устанавливаемых в канале трубчатых элементов, что способствует более высокому концентрированию маслопродуктов и повышению производительности ультрафильтрации в 1,1 —1,3 раза. С целью сокращения расхода энергии и увеличения производительности процесса изучена возможность применения цилиндрического вращающегося модуля ультрафильтрации. За рубежом ультрафильтрацию особенно широко используют в автомобильной промышленности. [c.326]

    Первый шаг в подготовке пробы к анализу состоит в пропускании воды через фильтр с порами 0.45 мкм для отделения часгиц q/спензии Затем фильтрат подкисляют соляной кислотой до pH 2 для предотвращения адсорбции определяемых ионов на сгенках посуды. При этом многие комплексные формы распадаются вследствие диссоциации. Однако в пробах воды практически всегда содержатся органические соединения, которые способны образовывать довольно усто№швые комплексы с ионами металлов и адсорбироваться на поверхности индикаторного электрода, препятствуя процессам электрохимического концентрирования и растворения. Для устранения мешающего влияния органических компонентов применяют облучение гфоб УФ-светом, электрохимическое окисление или кислотное разложение. На рис. 7.3 приведена общая схема пробоподготовки воды при определении в ней токсичных металлов с применением ИВА. Стадии фильтрации и УФ-облучения могут быть пропущены, если вода не содержит в заметных количествах органических компонентов и твердых частиц. [c.279]

    Термический анализ продукта электрохимического окисления i ра-фита в концентрированной серной кислоте / Скоропанов А. С., Альфер С. А., Кизина Т. А. и др.— Журнал прикладной химии, 1986, № 5, с. 1026-1030. [c.687]

    Хлорная кислота впервые была получена Стадионом в 1816 г., электрохимическое получение ее из разбавленных расгворов H I было предложено Уокером в 1918 г. Хлорная кислота образуется также при обработке перхлората натрия концентрированной НС1. Перхлораты могут быть выделены при разложении хлорноватокис-лых солей при осторожном нагревании до 400—450 °С или путем нейтрализации H IO4 соответствующими основаниями. [c.191]

    Активирование. Непосредственно перед покрытием изделия дополнительно обрабатывают в чистых растворах кислот или щелочей с целью удаления тонких пассивирующих пленок и активирования поверхности. Этот процесс осуществляется химическим способом в разбавленных (3—10%) серной и соляной кислотах или щелочах и электрохимически на аноде в концентрированной серной кислоте (70—85% H2SO4)—для стали или в растворе цианистого натрия (3—5%))—для меди и ее сплавов. Процесс проводят при комнатной температуре в пределах от нескольких секунд до 1—2 мин. При анодном активировании в серной кислоте плотность тока равна 3—10 А/дм . [c.374]

    Это можно представить себе более наглядно, введя понятие диффузионного потенциала. Рассмотрим границу растворов соляной кислоты различной концентрации, залитых в полуэлемен-ты электрохимической ячейки. Химический потенциал разбавленного раствора ниже, чем потенциал граничашего с ним концентрированного раствора. Поэтому ионы водорода и хлора из концентрированного раствора под действием разности химических потенциалов диффундируют в более разбавленный раствор (химический потенциал этих ионов примерно одинаков). Однако-подвижность ионов водорода более высокая, чем подвижность ионов хлора. Ионы водорода как бы спешат и создают в более разбавленном растворе избыток положительных зарядов,, т. е. электрическое поле. Это поле выравнивает скорость переноса ионов, ионы водорода тормозятся этим полем, а движение хлорид-ионов ускоряется. [c.319]

    Как сказано выше, концентрированная и разбавленная НС1, а такж,е разбавленная H2SO4 окисляют простые вещества за счет Н+. Поэтому данные кислоты способны взаимодействовать только с теми металлами, которые в электрохимическом ряду напряжений стоят до водорода. Если металл р- или -семейства проявляет несколько степеней окисления, то под действием НС1 или разбавленной H2SO4, образуется соль с низшей степенью окисления металла. [c.108]

    АЗОБЕНЗОЛ eH N = N jHs - оранжево-красные ромбические кристаллы, т. пл. 68° С не растворяется в воде, растворяется в спирте, лигроине, эфире, ледяной уксусной кислоте, концентрированной серной кислоте. Транс-А. (см. Изомерия) при интенсивном освещении переходит в нестойкую ч с-форму, более насыщенного цвета, плавящуюся при 71° С и самопроизвольно снова превращающуюся в транс-изомер. А. получают восстановлением нитробензола или азоксибензола цинковой пылью, электрохимическим восстановлением нитробензола и др. При восстановлении цинком в щелочной среде А. превращается в гидразобензол, в уксуснокислой среде — в анилин. Окислителями А. окисляется до азоксибензола. [c.9]

    Разность потенциалов на концах электрохимической цепи с переносом содержит Дфдифф и, следовательно, отличается от э. д. с., которая используется для расчета ДО химической реакции. Введение поправок на диффузионный потенциал по формуле (VI.28), естественно, приводит к ошибкам в АО. При этом следует учитывать, что ошибка в Дфд ФФ, равная 1 мВ, эквивалентна ошибке в АО, равной 0,1 кДж/моль. Существует способ резкого уменьшения диффузионного потенциала, который заключается в том, что между двумя растворами включают солевой мостик, т. е. концентрированный раствор соли, у которой Такими свойствами обладают, например, водные растворы КС1 и NH4NO3. При включении солевого мостика одна граница между двумя растворами I и II заменяется двумя, например I — КС1 и КС1 — И. Но на каждой из новых границ в согласии с формулой (VI.28) Афд фф меньше, чем на первоначальной, и, кроме того, диффузионные потенциалы на новых границах обычно обратны по знаку, так что общий их вклад в измеряемую разность потенциалов резко снижается. Таким образом, изменение измеряемой разности потенциалов при включении солевого мостика А в первом приближении может служить мерой первоначального диффузионного потенциала . Если величина S.E хорошо согласуется со значением Афд фф, рассчитанным по формуле (VI.28), то дис узионный потенциал можно элиминировать и по исправленным значениям Е проводить приближенные термодинамические расчеты. Так, например, на границе 0,1 н. растворов НС1 и Na l А = =33,1 мВ, а формула (VI.28) дает Дфд фф=33,4 мВ. Электрохимическую цепь с переносом и с элиминированным диффузионным потенциалом схематически изображают следующим образом  [c.112]

    Галогенсеребряные электроды сравнения очень удобны при работе в ячейках без жидкостного соединения они ггрименимы как в водных, так и во многих неводных средах. Они представляют собой серебряную проволоку, покрытую галогенидом серебра, который может быть нанесен как путем термического осаждения, так и электрохимически. Преимущество хлорсеребряного электрода по сравнению с каломельным состоит в том, что он устойчив при повышенных температурах. Хлорид серебра растворяется в концентрированных растворах хлорида калия, поэтому при приготовлении хлорсеребряного электрода необходимо насыщать раствор хлорида калия хлоридом серебра. [c.23]

    Подготовить электрохимическую ячейку для поляризационных измерений. С этой целью промыть все части ячейки теплой концентрированной Нл504, отмыть кислоту водопроводной водой, а затем бидистиллятом. [c.252]

    Для некоторых электродов необходима дополнительная химическая или электрохимическая полировка. С этой целью в открытый стаканчик наливают полировочный раствор, опускают электрод и инертный катод. Свинцовый электрод полируют в растворе состава 80 мл бидистиллята, 315 мл СНдСООН (ледяная), 60 г Hз OONa при этом плотность анодного тока 0,1—0,15 А/см . После полирования электрод промывают большим количеством бидистиллята и ставят в установку. Электрод из индия полируют в растворе, содержащем 550 г ЫН45 Оз в 1 л концентрированной HNOз. Электрод затем промывают бидистиллятом. [c.252]


Смотреть страницы где упоминается термин Концентрирование электрохимическое: [c.128]    [c.128]    [c.319]    [c.38]    [c.345]    [c.24]    [c.71]    [c.383]    [c.278]    [c.287]    [c.302]    [c.345]    [c.57]   
Основы современного электрохимического анализа (2003) -- [ c.417 ]

Методы анализа чистых химических реактивов (1984) -- [ c.46 ]




ПОИСК





Смотрите так же термины и статьи:

Козловский. Электрохимические методы концентрирования

Концентрирование растворенных форм электрохимическое

Методы концентрирования электрохимические

Определение примесей в лимонной кислоте с применением электрохимического способа концентрирования. В. 3. Красильщик Яковлева, Г. А. Штейнберг, Т. А. Мягкова

Рускол Ю. С. Закономерности коррозионного и электрохимического поведения титана в концентрированных растворах хлоридов

Спектральный анализ некоторых соединений фосфора с применением электрохимического концентрирования микропримесеи. В. 3. Красильщик, А. Ф. Яковлева

Химические и физико-химические методы анализа Применение электрохимических методов концентрирования при спектральном анализе веществ особой чистоты. (Обзор) Красильщик, А. Ф. Яковлева

Электрохимические производства концентрирования

Электрохимический метод защиты металлов Фокин, В. А. Тимонин. Защита титана от коррозии в концентрированных растворах соляной кислоты при повышенных температурах

Электрохимическое концентрирование определяемых элементов

Электрохимическое концентрирование при спектральном анализе веществ высокой чистоты



© 2025 chem21.info Реклама на сайте