Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Мышечное аэробный тип

    При работе умеренной интенсивности мышца может покрывать свои энергетические затраты за счет аэробного метаболизма. Однако при больших нагрузках, когда возможность снабжения кислородом отстает от потребности в нем, мышца вынуждена использовать гликолитический путь снабжения энергией. При интенсивной мышечной работе скорость расщеп- [c.655]


    Брожение является также жизненно важным процессом и для человеческого организма. Хотя в обычных условиях наши мышцы получают вполне достаточные количества кислорода, чтобы произошло окисление пирувата и образование АТР аэробным путем, бывают обстоятельства, когда поступление кислорода оказывается недостаточным. Например, при крайнем напряжении сил, когда уже весь запас кислорода израсходован, мышечные клетки образуют лактат путем брожения. Более того, в белых мышцах рыб или домашней птицы аэробный метаболизм относительно невелик, и основным конечным продуктом оказывается L-лактат. В организме человека есть такие ткани, которые слабо снабжаются кровью, например хрусталик и роговица глаза. В клетках этих тканей окислительный метаболизм выражен слабо, а энергия в основном образуется при сбраживании глюкозы в лактат. [c.345]

    Молочная кислота образуется в мышцах в анаэробных условиях и является конечным продуктом гликолиза. Количество образовавшейся молочной кислоты эквивалентно количеству распавшейся глюкозы. Установлено, что содержание молочной кислоты в крови человека и животных повышается после мышечной работы. Особенно резкое увеличение количества молочной кислоты наблюдается после усиленных мышечных упражнений. Однако уровень молочной кислоты в крови быстро снижается, так как она поглощается печенью и превращается там в гликоген. Ресинтез гликогена из молочной кислоты не может протекать самопроизвольно и осуществляется только при условии сопряжения его с окислительными процессами, дающими энергию. По данным Пастера и Мейергофа, ресинтез гликогена сопряжен с окислением некоторой части молочной кислоты до углекислого газа и воды. Основная масса молочной кислоты при этом превращается в гликоген. В настоящее время установлено, что в аэробных условиях при достаточном притоке кислорода гликогек и глюкоза окисляются через стадию пировиноградной кислоты до СОг и Н2О, минуя образование молочной кислоты (см. стр. 172). [c.254]

    Вообще говоря, у мелких животных кислород доставляется к мышцам циркуляторными системами достаточно быстро, так что необходимости в анаэробном использовании мышечного гликогена у них нет. Птицы, например, при своих перелетах часто покрывают огромные расстояния с очень большой скоростью без какой бы то ни было кислородной задолженности. Красным мышцам многих бегающих животных среднего размера также свойствен по преимуществу аэробный метаболизм. Однако у крупных животных при напряженной и длительной работе циркуляторная система оказывается уже не в состоянии поддерживать полностью аэробный метаболизм в мышцах. Эти животные движутся обычно медленно, и только крайние обстоятельства вынуждают их к усиленной мышечной активности, поскольку за каждой такой вспышкой активности должен следовать долгий период восстановления, необходимый для погашения кислородной задолженности. [c.443]


    При интенсивной работе возрастает потребность в АТФ. Аэробные процессы не могут ее восполнить, хотя потребление кислорода мышцами увеличивается до 90 % поступающего в организм. Подключаются анаэробные механизмы образования АТФ путем использования креатинфосфата и запасов гликогена (см. главу 15). Мышечный гликоген постав- [c.282]

    Удобным объектом для демонстрации гликолиза может служить мышечная кашица или мышечный экстракт. Экстракт не обнаруживает пастеровского эффекта, вследствие чего можно работать в аэробных условиях. В случае кашиц необходима изоляция от кислорода воздуха (вазелиновое масло). [c.153]

    В процессе обмена веществ между организмом и внешней средой организм ассимилирует питательные вещества, подвергает их химической переработке и использует для энергетических и строительных целей. Обмен веществ у аэробных организмов сопровождается непрерывно протекающим процессом дыхания, т. е. поглощением кислорода и выделением углекислоты. Этот тип обмена свойствен огромному большинству организмов, за исключением анаэробных форм, живущих в отсутствие кислорода. ГВ процессе обмена веществ происходит освобождение потенциальной химической энергии, содержащейся в различных питательных веществах, которую организм и использует для покрытия своих энергетических потребностей, превращая химическую энергию в тепловую энергию, энергию секреции, мышечной деятельности и др Количество освобожденной энергии обыкновенно выражается в калориях и может быть измерено при помощи специальных методов. [c.207]

    Нейроны, требующие большого количества энергии, красные мышечные волокна , служащие для длительной работы. Эти клетки (ткани) имеют хорошее кровоснабжение в их митохондриях высока активность ферментов дыхательных цепей. Поэтому в них происходит аэробный распад глюкозы через пируват до СО2 и Н2О, что дает 38 молекул АТФ на 1 моль глюкозы. [c.163]

    Известны и другие организмы, например дрожжи и паразиты кишечного тракта (ленточные черви и др.), которые могут существовать как без кислорода, так и в его присутствии. Их называют факультативными анаэробами при необходимости они переходят на анаэробное дыхание, однако в присутствии кислорода используют аэробный путь. Некоторые клетки, временно испытывающие недостаток кислорода (в частности, мышечные клетки), также обладают способностью к анаэробному дыханию. [c.350]

    Запас АТФ в клетках весьма невелик. Обычно организм восполняет этот запас по мере того, как он расходуется, однако при резком переходе от покоя к усиленной мышечной работе требуется некоторое время для того, чтобы приспособиться к этому новому состоянию. Существуют механизмы, способные поставлять мышцам необходимое количество энергии до тех пор, пока в достаточной мере не возрастет интенсивность аэробного дыхания. Один из таких механизмов — анаэробное дыхание. Важно понимать, что анаэробное дыхание служит дополнением к аэробному, а не его альтернативой. [c.352]

    Хотя при анаэробном дыхании на каждую молекулу глюкозы образуются всего две молекулы АТФ, а при аэробном — 38 молекул, зато в первом случае синтез АТФ идет в 2,5 раза быстрее (анаэробное дыхание дает пять молекул АТФ за тот же период времени, за который аэробное дает две). Анаэробное дыхание может, следовательно, быстро поставлять энергию. Источником глюкозы служит при этом запасенный в мышцах гликоген. Извлекаемой из него энергии хватает при максимальной мышечной активности на 90 с. [c.353]

    Для регенерации фосфокреатина — по окончании мышечной работы креатин вновь присоединяет фосфат энергию для этого поставляет аэробное дыхание. [c.353]

    Прижизненные биохимические процессы в мышце, изучавшиеся А. В. Прлладиным, В. Энгельгардтом и М. Любимовой, Д. Фердманом, В. А. Белицером и другими советскими исследователями, связаны с физиологическим актом мышечного сокращения и заключаются в реакциях гликолиза, ресинтеза мышечного гликогена, распада и ресинтеза креатинфосфата и АТФ и изменениях сократительного белкового вещества мышцы. При этом молочная кислота, образующаяся при утомлений мышцы, в результате реакций гликолиза при отдыхе мышцы в аэробных условиях частью (около одной пятой) подвергается полному окислительному распаду, а в большей своей части превращается снова в гликоген за счет энергии реакций аэробного окисления. Одновременно с реакциями гликолиза наблюдается распад АТФ и АДФ и затем креатинфосфата, что приводит к накоплению неорганических фосфатов. При отдыхе мышцы происходит ресинтез этих соединений, требующий энергии. Таким образом, наблюдается тесная связь между реакциями анаэробного и аэробного обмена в мышце, выражающаяся в том, что в аэробных условиях в мышце анаэробный распад углеводов замедлен. [c.234]

    Митохондрии имеются во всех эукариотических клетках. Эти органеллы — главное место аэробной дыхательной активности клетки. Впервые митохондрии были обнаружены в виде гранул в мышечных клетках в 1850 г. [c.355]


    Центральным метаболическим путем в организме человека является аэробный путь окисления глюкозы, который включает постепенный распад молекулы глюкозы до пировиноградной кислоты, а затем до ацетил-КоА с последующим окислением в цикле лимонной кислоты до конечных продуктов обмена СО2 и НдО. На нем сходятся многие другие пути превращения питательных веществ, которые сопровождаются выделением свободной энергии. В следующих главах рассмотрены только основные метаболические пути превращения веществ, которые обеспечивают энергетику мышечной деятельности, процессы восстановления и адаптации организма к физическим нагрузкам. [c.28]

    При мышечной деятельности суточная потребность в витамине В увеличивается до 6—8 мг в связи с участием его в регуляции аэробных процессов энергообразования, особенно в видах спорта на выносливость. [c.115]

    Потребность в витамине В2 увеличивается при неполноценном белковом рационе, в условиях гипоксии и при усиленной мышечной деятельности, связанной со значительным усилением аэробного энергообразования. [c.116]

    Биологическое действие. Карнитин (витамин В ) участвует в белковом и липидном обменах. Он присутствует в большинстве клеток организма, в том числе в мышечных волокнах, и улучшает в них процессы аэробного энергообразования, так как осуществляет транспорт жирных кислот в митохондриях, где они окисляются с выделением энергии. Стимулируя окисление жирных кислот, карнитин способствует сохранению запасов гликогена в клетках, а участвуя в обмене липидов, — препятствует развитию атеросклероза. [c.125]

    Синтез гликогена требует затрат энергии АТФ, УТФ и пирофосфата. При удлинении молекулы гликогена только на один остаток глюкозы используется 41 кДж энергии. Поэтому этот процесс в тканях интенсивно протекает в аэробных условиях за счет АТФ, образующейся путем окислительного фосфорилирования. В печени он накапливается при усиленном питании, а в мышцах — после истощения его запасов, например после длительной физической нагрузки. Наибольшая скорость синтеза гликогена наблюдается в период отдыха на 30—40-й минуте после приема углеводной пищи. Это необходимо учитывать при построении режима питания во время соревнований, с тем чтобы усилившийся процесс синтеза не затормозил использование гликогена при мышечной деятельности. [c.169]

    Аэробный метаболизм глюкозы по накоплению АТФ в 19 (18) раз более эффективен, чем анаэробный. Он имеет большой коэффициент полезного действия (около 45 %), так как из 2880 кДж свободной энергии окисления глюкозы 1311 кДж аккумулируется в АТФ. Аэробное окисление углеводов — основной механизм энергообеспечения аэробной мышечной работы в течение нескольких часов. [c.176]

    Печень в процессе глюконеогенеза для синтеза глюкозы использует не только жиры, аминокислоты, но и молочную кислоту. Накапливается молочная кислота в скелетных мышцах при интенсивной мышечной работе как продукт гликолиза. Однако подвергается окислению и превращению в глюкозу преимущественно в печени. Таким образом печень участвует в нормализации кислотно-щелочного состояния организма и способствует восстановлению уровня глюкозы в крови, а в период отдыха — и запасов гликогена в мышцах, поскольку образовавшаяся глюкоза в печени через кровоток доставляется в скелетные мышцы (см. главу 9). Согласно последним исследованиям, большая часть молочной кислоты (до 75 %) аэробно окисляется в различных тканях, поставляя энергию для восстановления энергетических субстратов. Меньшая ее часть (20 %) превращается в печени в глюкозу. Тем не менее такая интеграция обмена веществ между тканями (мышцы — печень) играет важную роль в восстановлении исчерпавшихся запасов углеводов после тяжелой физической работы. [c.282]

    В обычных условиях ресинтез АТФ в тканях происходит преимущественно аэробно, а при напряженной мышечной деятельности, когда доставка кислорода к мышцам затруднена, в тканях усиливаются и анаэробные механизмы ресинтеза АТФ. В скелетных мышцах человека выявлены три вида анаэробных и один аэробный путь ресинтеза АТФ (рис. 122). [c.307]

    При потреблении одинакового количества кислорода объем выполненной работы будет большим в том случае, если энергетическим субстратом будут углеводы, а не жиры. Углеводы являются более эффективным "топливом" по сравнению с жирами, так как на их окисление требуется на 12 % меньше кислорода в расчете на молекулу синтезированной АТФ. Поэтому в условиях недопоступления кислорода при физических нагрузках энергообразование происходит в первую очередь за счет окисления углеводов. Поскольку запасы углеводов в организме ограничены, ограничена и возможность их использования в видах спорта, требующих проявления общей выносливости. После исчерпания запасов углеводов к энергообеспечению работы подключаются жиры, запасы которых позволяют выполнять очень длительную работу. Так, в марафонском беге за счет использования мышечного гликогена работа мышц продолжается в течение 80 мин. Часть АТФ может быть получена за счет мобилизации гликогена печени. Следовательно, за счет углеводов можно обеспечить энергией 75 % марафонской дистанции. Остальное количество энергии образуется за счет окисления жирных кислот. Учитывая, что жирные кислоты содержат большое количество энергии, весьма важно развивать способность организма спортсмена к более ранней их мобилизации для энергообеспечения работы. Для этого рекомендуется периодически использовать в тренировке аэробные нагрузки — бег на сверхдлинные дистанции (по 30--40 км и более). [c.320]

    Восстановление диоксиацетонфосфата в глицерофосфат происходит также в летательных мышцах насекомых по-видимому, оно представляет путь, альтернативный образованию в этих тканях молочной кислоты. Хотя превращение свободной глюкозы в глицерофосфат и пируват не дает в итоге прироста АТР, следует учесть, что в мышцах исходным материалом служит гликоген, который по сравнению со свободной глюкозой требует для затравочных реакций вдвое меньше АТР. Кроме того, дисмутация триозофосфата, приводящая к образованию глицерофосфата и пирувата, может обеспечить быструю наработку АТР при интенсивных сокращениях мощной летательной мышцы насекомого. Во время более медленной восстанпвительной фазы глицерофосфат, как полагают, снова окисляется, поступая в митохондрии этих в высокой степени аэробных клеток. Таким образом, транспортировка глицерофосфата в митохондрии служит средством доставки в митохондрии восстановительных эквивалентов, полученных от NADH. Возможно поэтому, что значение глицерофосфата для мышечного метаболизма связано в основном с его транспортной функцией, а не с участием в бысТ" ром образовании АТР. [c.349]

    Один из центральных вопросов современной биохимии заключаете в том, каким образом поток электронов по цепи переносчиков приэодц к образованию АТР. Вопрос этот очень важен, так как большая часть АТР, образующегося в аэробных и некоторых анаэробных организмах, генерируется именно в процессе окислительного фосфорилирования. Более того, энергия, улавливаемая в процессе фотосинтеза, идет на образование АТР с помощью очень сходного процесса. Механизм генерирования АТР может быть тесно связан с функционированием мембран при транспорте ионов. Вполне возможно, что механизм окислительного фосфорилирования в известном смысле является обратным механизму использования энергии АТР для мышечного сокращения. [c.391]

    Источниками энергии для мышечного сокращения обычно служит глюкоза, приносимая кровью или образующаяся при расщеплении гликогена в мыщцах, а также жирные кислоты. При окислении этих молекул в митохондриях (аэробном дыхании) синтезируется АТФ. [c.388]

    С мышечным экстрактом гликолиз можно вести в аэробных условиях. Процесс обнаруживается по накоплению углекислого газа, вытесненного молочной кислотой из бикарбоната. Молочная кислота может быть обнаружена также при помощи описанной выше реакции с вератролом. [c.156]

    Наличие известного сходства между аэробным и анаэробным углеводным обменом вытекает уже и из того обстоятельства, что животные ткани, например, мышечная ткань, не содержат ферментов, окисляющих нефосфорилированные гексозы. Фосфорилирование является столь же необходимым условием аэробного использования углеводов, как и их анаэробного расщепления с образованием, например молочной кислоты. [c.272]

    До сих пор наше внимание было сосредоточено в основном на двух источниках энергии и углерода — углеводах и аминокислотах. Но если при кратковременной интенсивной мышечной работе чаще всего используется АТФ гликолитического происхождения, то длительная мышечная актгшность у позвоночных обычно осуществляется за счет обмена жирных кислот. А поскольку распад жирных кислот по пути 3-окисления (рис. 22) дает в качестве конечного продукта ацетил-КоА, который затем поступает в цикл Кребса для полного сжигания до СО2 и воды, длительная работа мышц на этом топливе обязательно требует аэробных условий. [c.76]

    Разные ткяпн позвоночных, кяк и слеловя.по ожидать ввиду различия их функций, обладают неодинаковой способностью к окисленшо жирных кислот. Ткани, приспособленные к аэробному функционированию, особенно сердечная мышца, в этом отношении весьма активны. Скелетные мышцы, если в них много красных волокон, также способны к интенсивному окислению жирных кислот. Напротив, у белых мышечных волокон возможности такого аэробного синтеза АТФ очень невелики. [c.77]

    Летательные мышцы птиц обычно содержат и красные, и белые волокна. Чем выше аэробный потенциал мышцы, тем больше в ней доля красных волокон. В т. зиргасогасо1с1еи5 колибри (рис. 24) имеются только красные мышечные волокна. [c.81]

    Но как при мышечном сокращении, так и прн брожении не происходит освобождения энергии в таком количестве, как при полном окислении глюкозы. Это зависит от того, что подавляющая часть свободной энергии исходного материала остается в продуктах реакции. Она становится доступной для использования лишь при условии дальнейшего распада этих продуктов. Так, например мышца, работающая в анаэробных условиях, может использовать только 32 000 калорий вместо тех 674 000 калорий, которые освобождаются из того же количества глюкозы при ее полном аэробном окислении. Это происходит от того, что в образующихся из глюкозы двух молекулах, хюлочной кислоты остается около 640-000 калорий. [c.374]

    Итак, мы видим, что системы фосфокреатина и анаэробного дыхания поставляют энергию быстро, но только в течение короткого времени. Аэробная система способна служить источником энергии неограниченно долго при достаточном количестве дыхательного субстрата. В таких видах спорта, которые рассчитаны на короткое и резкое усиление мышечной активности, например в беге на короткую дистанцию или в поднятии штанги, энергию поставляет главным образом система фосфокреатина. При беге на 200 м анаэробное дыхание может служить дополнительным источником энергии. При беге на 400 м оно поставляет уже большую часть энергии, а при таких играх, как теннис, сквош или футбол, практически вся энергия в момент предельного напряжения поступает от этой системы. Те виды спорта, в которых главное — выносливость, например марафон, бег трусцой или бег на лыжах по пересеченной местности, зависят почти целиком от аэробного дыхания. [c.353]

    В результате усиления мобилизации жиров в жировых клетках существенно повышается уровень СЖК и глицерина в крови. Высокая концентрация СЖК, а также изменение механизмов транспорта (функция переносчиков) способствуют накоплению СЖК в скелетяых мышцах и активируют ферменты их окисления. Проникновение СЖК в волокна скелетных мышц осуществляется путем активного транспорта с участием переносчиков. После поступления в мышечные клетки СЖК используются в аэробном окислении либо, частично, для синтеза триглицеридов. [c.209]

    Быстрой и "тонкой" регуляцией является так называемая аллостери-ческая регуляция активности фермента посредством веществ, воздействующих на аллостерический центр фермента и изменяющих их конформацию. Как правило, такой фермент расположен в начале метаболического пути. Однако он может ингибироваться конечным продуктом данного обмена при его накоплении или несколькими метаболитами — его аллостерическими регуляторами. Примером может служить ключевой фермент гликолиза — фосфофруктокиназа (ФФК), имеющий около 10 аллостерических регуляторов, от взаимодействия с которыми изменяется его активность. Это такие вещества, как АТФ, АДФ, АМФ, Фн, лимонная кислота, жирные кислоты, а также pH и другие факторы. В состоянии относительного покоя ФФК в скелетных мышцах не активна, так как ингибируется высокими концентрациями АТФ и лимонной кислоты. При интенсивной мышечной деятельности концентрация АТФ снижается, а концентрация АДФ и АМФ повышается. Это активирует ФФК и скорость гликолиза. Когда же баланс АТФ в мышцах восстанавливается, что происходит при улучшении снабжения кислородом, активность ФФК снижается и скорость гликолиза падает. Мышцы переключаются на аэробный механизм энергообразования с постепенным переходом на утилизацию жиров. [c.269]

    Отдельные типы волокон отличаются также механизмами энергообразования. Как следует из табл. 20, медленносокращающиеся волокна, которые имеют малую скорость сокращения, располагают большим количеством митохондрий, ферментов биологического окисления углеводов и жиров, белка миоглобина, который запасает кислород, а также большой сетью капилляров, обеспечивающих достаточное поступление кислорода в мышцы, и большими запасами гликогена. Все это свидетельствует о том, что в МС-волокнах преобладают аэробные механизмы энергообразования, которые обеспечивают выполнение длительной работы на выносливость. Мотонейрон, иннервирующий МС-волокна, имеет небольшое тело клетки и управляет относительно небольшим количеством мышечных волокон (10—180). [c.290]

    Сравнительная характеристика креатинфосфокиназного, гликолити-ческого и аэробного механизмов энергообеспечения мышечной деятельности по оценочным критериям представлена в табл. 22. [c.308]


Смотреть страницы где упоминается термин Мышечное аэробный тип: [c.152]    [c.656]    [c.484]    [c.757]    [c.17]    [c.79]    [c.82]    [c.84]    [c.17]    [c.352]    [c.387]    [c.184]    [c.310]   
Молекулярная биология клетки Сборник задач (1994) -- [ c.194 ]




ПОИСК





Смотрите так же термины и статьи:

аэробные



© 2025 chem21.info Реклама на сайте