Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Мембраны. также Клеточные мембраны

    Все эти примеры служат иллюстрацией пассивного, но стереоселективного переноса, когда органические модельные системы осуществляют асимметричное узнавание. Однако можно провести аналогию между этими результатами и процессом опосредованного переноса через биологические мембраны. Все липидные мембраны практически непроницаемы для внутриклеточных белков и высокозаряженных органических и неорганических ионов, находящихся с обеих сторон мембраны. Диффузия Na+ через клеточную мембрану из клетки и К+ в клетку происходит в направлении отрицательного градиента химического потенциала и называется пассивным переносом. Пассивный перенос ионов через мембраны может быть вызван ионофорами [см. разд. 5.1.3]. К счастью, концентрации катионов по обе стороны мембраны различные, и такое состояние поддерживается активным переносом, который зависит от метаболической энергии. Механизм этого процесса известен под названием натриевый насос, функция которого сводится к поддержанию высокой внутриклеточной концентрации К+ и низкой концентрации Na+. Кальций, по-внднмому, также активно выводится из клеток. В этих случаях энергия для переноса обеспечивается за счет гидролиза АТР. Однако диффузия сахаров и аминокислот к важнейшим клеточным объектам — пример простого опосредованного пассивного переноса. [c.282]


    Большое теоретическое и практическое значение имеют двумерные пленки как изолированные, так и поверхностные слои на границах раздела в эмульсиях, пенах, в порах катализаторов и адсорбентов. Особый интерес представляют клеточные мембраны живых организмов. Клеточные мембраны, т. е. оболочки клеток, обычно состоят из двух или четырех ориентированных слоев больших органических молекул. Роль мембраны не только в разграничении одних клеток от других, но также и в участии в жизнедеятельности организма. [c.368]

    Огромный интерес в настоящее время представляют клеточные мембраны, принимающие участие, как недавно выяснилось, в основных жизненных функциях организма. Они обычно состоят из двух (или четырех) ориентированных слоев больших органических молекул. Свойства этих мембран, как и поверхностных слоев, а также свободных пленок, отличаются от свойств разделяемых ими объемных фаз. [c.12]

    В последние годы появилось много сведений о строении биологических мембран. Важные данные были получены отчасти благодаря биохимическим методам (выделение различных химических соединений из клеточных мембран), рентгеноструктурному анализу, электронному и ядерному магнитному резонансу, спектроскопии, но в основном благодаря применению электронного микроскопа. Клеточные мембраны, такие, как мембрана эритроцита, состоят из примерно равных коли честв липидов и белков. В них присутствует также небольшое количество (несколько процентов) полисахаридов, которые соединяются с полипептидными цепями с образованием гликопротеидов. [c.465]

    Свет, испускаемый возбужденными молекулами немедленно после его поглощения, всегда частично поляризован независимо от того, был ли плоскополяризован возбуждающий свет. Со временем, после того как молекулы примут беспорядочную ориентацию, поляризация люминесцентного излучения исчезает. Зная степень деполяризации флуоресценции, можно получить ценную информацию о скорости вращения макромолекул, с которыми связан флуоресцирующий хромофор, а также о подвижности хромофорных групп внутри макромолекулы, клеточной мембраны и т. д. [52, 53, 55, 61]. Скорость вращения, получаемая из данных по измерению степени поляризации, сильно зависит от вязкости [c.30]

    В целом гормоны местного действия оказывают различное действие на близлежащие клетки, в частности усиливают или тормозят рост, влияют на миграцию, а также на дифференцировку клеток. Во многих случаях гормоны местного действия —это специфические пептиды или белки, но в этом качестве могут выступать также более простые соединения небольшие пептиды, гистамин, серотонин и даже бикарбонат-ион [163]. Эти вещества, передвигаясь от одной клетки к другой, должны проникать через клеточные мембраны. Обычно они переносятся жидкостью, окружающей клетки, но иногда и более прямым путем — через щелевые соединения (гл. 1, разд. Д, 3, а). В этих соединениях имеются специальные каналы, по которым происходит транспорт между цито- [c.358]


    Липиды-осн. строит, материал, из к-рого формируются клеточные мембраны. Сложность, многообразие и изменчивость липидного состава мембран позволяет предположить, что они участвуют также в регуляции важнейших мембранных процессов. [c.29]

    Эта система участвует не только в синтезе ферментов, которые сек-ретируются клеткой, но и в образовании новых мембран. По-видимому, шероховатый ЭР поставляет мембранный материал гладкому ЭР и аппарату Гольджи, а компоненты мембран Гольджи включаются в состав наружной клеточной мембраны. В растительных клетках наружные мембраны митохондрий и мембраны, окружающие вакуоли, также образуются непосредственно из ЭР [19]. Компоненты наружных клеточных мембран, вероятно, могут использоваться повторно, включаясь в соответствующую структуру в ходе эндоцитоза [20]. [c.33]

    Если на каком-нибудь участке мембраны проницаемость для ионов натрия увеличивается, то эти ионы устремляются внутрь клетки, нейтрализуя ее отрицательный заряд. Клеточная мембрана при этом деполяризуется. При деполяризации по поверхности мембраны распространяется затухающий электрический сигнал, аналогично тому как это имеет место при прохождении тока по коаксиальному кабелю Считают, что включение нервного импульса часто связано с локальным увеличением проницаемости мембраны для ионов натрия. В этом процессе могут играть определенную роль также и другие ионы, в частности Са +. Пассивное распространение электрических сигналов, обусловленное локальной деполяризацией мембраны, происходит, однако, только в случае очень коротких нервных клеток на длинные расстояния этим способом сигнал распространяться не может. В большинстве аксонов нервных клеток используется более эффективный способ проведения импульса, основанный на развитии потенциала действия. Потенциал действия — это импульс, проходящий вдоль аксона и специфически изменяющий за доли секунды (в нервах млекопитающих приблизительно за 0,5 мс) мембранный потенциал (рис. 5-6). Исходный отрицательный потенциал - 50—70 мВ быстро падает до нуля, затем достигает положительного значения 40—50 мВ, после чего снова устанавливается потенциал покоя. Поразительная особенность потенциала действия состоит в том, что он распространяется вдоль аксонов со скоростью 1 —100 м/с без снижения интенсивности. [c.370]

    Считают, что антигены А и В, ответственные за агглютинацию зрелых эритроцитов под действием специфических антител, связаны главным образом с гликопротеидами [81, 82], однако известны также антигены, связанные с гликосфинголипидами (табл. 2-8) наружной клеточной мембраны [83—85]. При болезни Фабри (гл. 12, разд. Г.1) [84] в числе прочих продуктов в избытке накапливается гликолипид, проявляющий свойства антигена В. [c.377]

    Другими исследователями было найдено, что скорости окисления оксидазами а- и Р-О-глюкозы различны. Показано также, что в ряде процессов (например, транспорт сахаров через клеточные мембраны) участвует ациклическая форма углевода. [c.75]

    Таким образом, в древесных волокнах слои 8 и 8з(Т) образуют как бы спиральную обмотку вокруг основного слоя клеточной стенки - слоя 82 и защищают его от внешних воздействий со стороны срединной пластинки и полости. Отмечают высокую устойчивость слоев 8 и 8з(Т) и особенно первичной стенки Р, а также бородавчатой мембраны к действию химических реагентов. Спиральная структура клеточной стенки обусловливает высокую механическую прочность древесных и целлюлозных [c.221]

    В растительных клетках нити веретена во время телофазы начинают исчезать они сохраняются лишь в области экваториальной пластинки. Здесь они сдвигаются к периферии клетки, число их увеличивается и они образуют боченковидное тельце — фрагмопласт. В эту область перемещаются также микротрубочки, рибосомы, митохондрии, эндоплазматический ретикулум и аппарат Гольджи последний образует множество мелких пузырьков, наполненных жидкостью. Пузырьки появляются сначала в центре клетки, а затем, направляемые микротрубочками, перемещаются и сливаются друг с другом, образуя клеточную пластинку, расположенную в экваториальной плоскости (см. рис. 5.30). Содержимое пузырьков участвует в построении новой срединной пластинки и стенок дочерних клеток, а из их мембран образуются новые наружные клеточные мембраны. Клеточная пластинка, разрастаясь, в конце концов сливается со стенкой родительской клетки и полностью разделяет две дочерние клетки. Новообразованные клеточные стенки называют первичными в дальнейшем они могут дополнительно утолщаться за счет отложения целлюлозы и других веществ, таких как лигнин и суберин, образуя вторичную клеточную стенку. В определенных участках клетки пузырьки клеточной пластинки не сливаются, так что между соседними дочерними клетками сохраняется контакт. Эти цитоплазматические каналы выстланы клеточной мембраной и образуют структуры, называемые плазмодесмами. [c.150]


    Микрооргангомы могут расти как на насыщенных, так и на ненасыщенных углеводородах [266]. Наиболее часто используются парафины нормального строения. Микроорганизмы могут использовать газообразные алканы, а также жидкие парафины 9- 16, низкомолекулярные жидкие парафины s- g обычно не используются, потому что они способны растворять клеточные мембраны, вследствие чего микроорганизмы гибнут. [c.102]

    В таком случае диметилртуть, ио-видимому, также синтезируется путем присоединения метильиого радикала к металлической ртути. Действительно, кажется вполне вероятным, что в определенных организмах Н (П) транспортируется через клеточные мембраны, восстанавливается до металлической ртути, а затем метилируется. Будучи летучим соединением, диметилртуть должна легко диффундировать из клеток микробов наружу и освобождаться в воду. При кис- [c.396]

    Большой интерес для биологии представляют пленки, образованные двумя или несколькими компонентами (не считая молекул подложки). К ним относятся, например, пленки, образованные двумя нерастворимыми в воде, но взаимно растворимыми веществами ( нерастворимые растворы ), а также пленки, состоящие из нерастворимого вещества и растворимого ПАВ, например, исследуемые Зонтагом (ГДР) ПАВ-полимерные пленки и липиднопротеиновые пленки. Последние изучают в настоящее время особенно интенсивно, поскольку они являются следующей (после обычной пленки) стадией модельного приближения к биологическим мембранам. Согласно современным представлениям, клеточные мембраны бимолекулярны и состоят из двух фосфолипидных слоев, обращенных наружу полярными группами, которые связаны с полярными группами полипептидной цепи белковых молекул. [c.112]

    Липиды—это сложные эфиры глицерина или сфингозина (длинноцепочечного аминоспирта) и жирных кислот (предельных и непредельный), содержащих в основном углеводородные радикалы —С18. Большинство лигшдов имеют в молекуле две такие гидрофобные цепи. Полярные части могут включать различные химические группы эфирвые (моно-, ди- и триглицериды), остатки фосфорной кислоты (фосфолипиды), а также углеводные остатки (в большой группе гликолипидов). На рис. П-ЗО приведены структурные формулы некоторых наиболее распространенных липидов различных классов. В организме липиды, как правило, вместе с белками являются основной составляющей таких биоструктур, как клеточные мембраны. [c.96]

    На третьей - фармакодинамической - стадии изучаются проблемы распознавания лекарственного вещества (или его метаболитов) мишенями и их последующего взаимодействия. Мишенями могут служить органы, ткани, клетки, клеточные мембраны, ферменты, нуклеиновые кислоты, регуляторные молекулы (гормоны, витамины, нейромедиаторы и т.д.), а также биорецепторы. Рассматриваются вопросы структурной и стереоспе-цифичной комплементарности взаимодействующих структур, функционального и химического соответствия лекарственного вещества или метаболита (например, фармакофорной группировки) его рецептору. Взаимодействие между лекарственным веществом и рецептором или акцептором, приводящее к активации (стимулированию) или дезактивации (ингибированию) биомишени и сопровождающееся ответом организма в целом, в основном обеспечивается за счет слабых связей - водородных, электростатических, ван-дер-ваальсовых, гидрофобных. [c.13]

    Большинство Л. с., попадая после абсорбции в кровь, распределяется по тканям и органам неравномерно и лишь незначит. часть-относительно равномерно. На распределение Л. с. существ, влияние оказывают их физ.-хим. св-ва, сродство к тем или иным тканям, интенсивность кровоснабжения органа и т.д., а также биол. барьеры организма (стенки капилляров, клеточные мембраны, гематоэицефа-лич., гематоофтальмич. и плацентарный барьеры). Л. с., циркулирующие в организме, в разл. степени связываются с белками плазмы крови, образуя клеточные и внеклеточные депо, накапливаются в жировой, костной и др. тканях. [c.584]

    Молекула Т. содержиг два анионсвязывающих участка, один из к-рых расположен вблизи каталитич. центра и ответствен за узнавание фибриногена. Со вторым связываются гепарин и др. полисахариды, а также гарудин (белок, вырабатываемый слюнными железами мед. пиявок состоит из 65 аминокислотных остатков) и клеточные мембраны. [c.13]

    В нашей стране и за рубежом ДТПА и пентацин широко применяются в качестве терапевтического средства при ускоренном выведении из организма урана, плутония, трансплутониевых элементов, а также некоторых других металлов [953, 954]. Недостатками этих препаратов являлись их относительная токсичность и слабая проникающая способность через клеточные мембраны, затрудняющая выведение полимерных форм плутония, депонированных в клетках [931]. Первый из этих недостатков удалось преодолеть, используя вместо ДТПА и пентацина тринатриевую соль диэтилентриаминпентаацетата цинка, которая по своим фармакологическим свойствам не отличается от пентацина, но значительно менее токсична. Этот препарат одобрен для клинического применения в ФРГ и США. Для улучшения транспортировки комплексонов в клетки органов и тканей предложено использовать липосомы [955]. [c.495]

    Установлено также, что ксидифон защищает наружную клеточную мембрану эритроцитов и Т-лимфоциты от иммунного повреждения, связывая Са +. Этот факт может иметь важное значение для понимания механизмов развития и лечения ряда заболеваний, прн которых ведущим патогенетическим эвеном является нарушение на иммунной основе целостности наружной клеточной мембраны. [c.499]

    Тонкая ( 8 нм) наружная клеточная мембрана — плазмалемма (рис. 1-4)—регулирует поток веществ в клетку и из клетки, проводит импульсы в нервных и мышечных волокнах, а также участвует в химических взаимодействиях с другими клетками. Складки наружной мембраны нередко вдаются глубоко внутрь клетки, в цитоплазму так, на--Пример, в клетках поперечнополосатых мышц они образуют трубочки Т-системы, которая участвует в проведении возбуждения, инициирующего процесс сокращения (гл. 4). Складки плазматической мембраны могут соединяться с ядерной оболочкой, создавая прямые каналы (один или несколько) между внеклеточной средой и перинуклеарным пространством [12]. [c.29]

    Этот пептид обладает противовоспалительным действием. Лечебное действие пчелиного яда при ревматических заболеваниях объясняется присутствием этого пептида. После успешного синтеза, осуществленного Бирром в 1977 г., иовые интереснейшие данные могли бы дать исследование действия пептида на клеточные мембраны тучных клеток, а также исследование противовоспалительного действия при варьировании аминокислотной последовательности. [c.314]


Смотреть страницы где упоминается термин Мембраны. также Клеточные мембраны: [c.244]    [c.248]    [c.144]    [c.45]    [c.282]    [c.473]    [c.228]    [c.81]    [c.162]    [c.190]    [c.224]    [c.43]    [c.70]    [c.128]    [c.314]    [c.28]    [c.468]    [c.522]    [c.252]    [c.353]    [c.134]   
Биохимия Т.3 Изд.2 (1985) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Клеточные мембраны также Белки мембран, Постсинаптическая мембрана

Клеточные мембраны, также Мембранные белки, Плазматическая мембрана

Мембрана клеточная

Мембраны. также Клеточные мембраны Меркаптоэтанол

Мембраны. также Клеточные мембраны Меркаптоэтиламин

также Клеточные мембраны

также Клеточные мембраны



© 2025 chem21.info Реклама на сайте