Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Водород в органических соединениях подвижный

    Как говорилось выше, неионогенные ПАВ можно синтезировать из различных органических соединений, имеющих в своем составе подвижный атом водорода. К таким веществам относятся органические кислоты, спирты, амины, амиды, меркаптаны. Окись этилена к этим соединениям присоединяют в присутствии небольшого количества (до 2%) щелочного катализатора при 140—200° С. [c.95]


    В 1954 г. одним из авторов статьи был написан первый обзор реакций присоединения неполных эфиров кислот фосфора по углерод-углеродным и углерод-азотным кратным связям, открытым им в 1947 г. в лаборатории Казанского университета. В дальнейшем в ряде обзоров, посвященных химии фосфинов > эфиров фосфористых и фосфиновых кислот , некоторым реакциям фосфорорганических соединений, с различной степенью полноты рассматривались вопросы, связанные и с реакциями присоединения тех или иных типов органических соединений фосфора. В настоящем обзоре сделана попытка систематизировать и обобщить все имеющиеся данные по присоединению фосфорорганических соединений с подвижным атомом водорода как к кратным, так и к простым связям в циклических соединениях. [c.10]

    Синтез изотопным обменом может быть применен для введения в молекулы радиоактивных и стабильных изотопов вместо атомов, находящихся в подвижном положении. Атомы неорганических соединений обладают большой подвижностью, поэтому изотопным обменом метка может быть легко введена в любое положение соединения, кроме случая, когда он — центральный атом комплексного иона. В органических соединениях подвижными являются атомы галоидов, металлов, в отдельных случаях атомы серы. Атомы водорода подвижны в ОН-, НН-, 5Н-группах. Связь С—Н более устойчива и обмен таких атомов водорода возможен лишь в жестких условиях (щелочной или кислой средах). Атомы углерода в органических соединениях неподвижны, но в условиях протекания перегруппировок введение радиоактивных атомов углерода в молекулу изотопным обменом возможно. [c.511]

    Регулирование молекулярной массы сополимеров. Регулирование молекулярной массы сополимеров можно осуществлять введением специальных добавок, таких, как водород [38], органические соединения цинка [39], галогенпроизводные углеводородов с подвижным атомом углерода [40], электронодонорные соединения и др. [c.304]

    В качестве стабилизаторов (антиоксидантов) используют органические соединения, содержащие подвижные атомы водорода [c.73]

    Осталось обсудить еш,е один вопрос, относящийся к химической связи в органических соединениях. В подавляющем большинстве соединений все молекулы имеют одинаковую структуру независимо от того, можно ли ее удовлетворительно представить формулой Льюиса. Однако многие соединения представляют собой смесь двух или нескольких структурно различных соединений, находящихся в состоянии быстрого равновесия. Когда такое явление, называемое таутомерией [228], имеет место, происходит быстрый перенос атома от одной молекулы к другой и обратно. Почти во всех случаях таким подвижным атомом является водород. [c.95]


    Мы полагаем, что вопрос о механизме реакций конденсации азометинов с органическими соединениями с подвижным водородом и циклизации р-арил- 3-2-нафтил-аминокетонов еще нуждается в дальнейшем исследовании. [c.43]

Рис. 139. Схема прибора для определения отношения количества водорода к углероду в органических соединениях i — ноинзационные камеры 2 —источник -излучения Л —индикатор нулевого тока 4— подвижный клин 5--образец, — поглотитель. Рис. 139. <a href="/info/855414">Схема прибора</a> для <a href="/info/54201">определения отношения</a> <a href="/info/63852">количества водорода</a> к углероду в <a href="/info/428">органических соединениях</a> i — ноинзационные камеры 2 —источник -излучения Л —индикатор <a href="/info/427261">нулевого тока</a> 4— подвижный клин 5--образец, — поглотитель.
    Аналогично действуют и различные органические соединения, содержащие подвижный (активный) водород, например спирты (стр. 107) [c.304]

    Это группировка, не имеющая в функциональной группе подвижного водорода не имеющая кратных связей и, следовательно, не склонная к реакциям присоединения. Свободные электронные пары атома галогена хотя и создают возможность для присоединения, однако такие реакции редки (это образование органических соединений с многовалентными галогенами, которые мы рассматривать не будем). Галогены как элементы более электроотрицательные, чем углерод, создают па связанном с ними атоме углерода частичный положительный заряд. [c.142]

    Эти остатки могут присоединяться к этиленовым связям или замещать подвижный атом водорода в органических соединениях. [c.663]

    Обменные реакции — это обратимые химические реакции с вполне определенной кинетикой и константой равновесия. Подвижность отдельных атомов водорода в молекуле органического соединения зависит от характера связи. [c.684]

    Каталитическая активность веществ не связана и с подвижностью ионов водорода тщательные исследования [739] показали, что органические соединения, имеющие весьма подвижный водород, каталитической активностью не обладают. [c.213]

    Реакции изотопного обмена играют существенную роль при получении органических соединений, меченных тритием, особенно-в тех случаях, когда атомы водорода в их молекулах являются подвижными, В случае малой реакционной способности атомов водорода в молекуле органического соединения реакция изотопного  [c.53]

    Обычные методы определения подвижных атомов водорода в органических соединениях, как известно основаны на химических реакциях, часто приводящих к образованию газообразных продуктов, которые и подвергаются анализу. Использование радиоактивных изотопов дало возможность разработать методику, основанную на реакции изотопного обмена подвижного водорода в органических соединениях с радиоактивным водородом гидроксильных групп спиртов или воды [223]. Определение подвижного водорода этим методом заключается в растворении анализируемого образца в тритированной воде или спирте, отгонке растворителя [c.119]

    Уже отмечалось, что фенолы и ароматические амины представляют самую многочисленную группу органических соединений, которые можно фотометрически определять в виде интенсивно окрашенных азосоединений. Однако соединения других типов также способны реагировать с солями диазония с образованием азосоединений. Это относится к некоторым соединениям, имеющим подвижный атом водорода. Отмечалась способность ароматических углеводородов (толуол, л-ксилол, 1-метилнафталин) взаимодействовать с наиболее активными солями диазония, например, с диазотированным 2,4,6-тринитроанилином. Присутствие таких заместителей, как —СНз, —ЫНг и —ОН, усиливает эту способность. Наличие подвижного атома водорода у многих алифатических соединений позволяет фотометрически определять их, используя реакции с солями диазония. [c.24]

    Под влиянием катализаторов или при высокой те.мпературе даже прочно связанный водород органических соединений может сделаться настолько подвижным, что становится возможным замещение его дейтерием. Например, насыщенные жприые кислоты в концентрированной серкой кислоте при высокой температуре обменивают на дейтерий атомы водорода у а-С-атома, а при действии тяжелой воды в присутствии 1 %-ной щелочи и платины при 130 , по-видимому, обменивают на дейтерий даже все атомы Н. [c.1145]

    Эта реакция, которая может быть проведена со всеми органическими соединениями, имеющими подвижный атом водорода, называется реакцией сульфометилирования. Она также гладко протекает и с фенолами, аминами, амидами кислот, меркаптанами, тиофенолами и др. В этой реакции mohiho применять вместо бисульфита двуокись серы, о чем свидетельствует следующий опыт. [c.425]

    В выпускаемых и широко используемых АЭД-приборах анализируемое вещество из хроматографической колонки вводится непосредственно в плазму конец хроматографической колонки вставляют непосредственно в разрядную трубку, в которой находится плазма (рис. 14.2-10). Поскольку стабильная работа плазмы и чувствительное и селективное детектирование различных элементов требует скоростей потока гелия 30-200 мл/мин, в поток вводится дополнительный гелий. Газ-реагент или маскирующий газ (кислород или водород или комбинация обоих газов для детектирования большинства элементов или смесь азота и метана для детектирования кислорода) также добавляется в поток перед введением его в плазму для повышения селективности и чтобы предотвратить образование углеродных отложений на стенках разрядной трубки. Плазма поддерживается микроволновым генератором низкой емкости (60 Вт) в кварцевой разрядной трубке внутренним диаметром около 1 мм, расположенной в центре микроволновой полости. Поскольку плазма не выдерживает введения больших количеств органических соединений, перед входным отверстием в плазму установлено клапанное устройство. При температуре плазмы более 3000 К определяемые соединения полностью атомизованы, возбуждены и испускают характеристическое излучение. Эта элемент-специфичная эмиссия наблюдается через открытый конец разрядной трубки (чтобы предотвратить мещающее влияние отложений на стенках разрядной лампы) и проходит через проводящую оптику на голографическую решетку, диспергирующую полихроматический свет. Расположенная в фокальной плоскости решетки подвижная 211-строчная фотодиодная матрица детектирует элемент-специфичное излучение. Поскольку диодная матрица покрывает лишь 25 нм всего доступного спектра (165-800 нм), одновременно могут детектироваться лишь те элементы, которые имеют эмиссионные линии, находящиеся достаточно близко, чтобы детектироваться при одном положении диодной матрицы. По этой причине, [c.616]


    Этот циклический амин, построенный аналогично окиси этилена, кипит при 56 , пахнет аммиаком, очепь ядовит и, так же как окись этилена, способен легко вступать в разнообразные реакции. Он служит для введения ами-ноатпльпой группы в органические соединения, обладающие подвижным атомом водорода. Плотность атплепиыина при 26° равна 0,8371 = 1,413. [c.421]

    Реакции магнийорганических соединений с реагентами, имеющими подвижные атомы водорода, применяют для количественного определения подвижного водорода в органических соединениях (метод Чугаева — Церевитинова). Если использовать метилмагнийнодид (или -бромид), то при взаимодействии с соединениями, имеющими подвижные атомы водорода, по объему выделившегося метана можно определить их количество в молекуле исследуемого соединения  [c.265]

    Благодаря большой подвижности атома водорода, находящегося в пара-положении- относительно аминогруппы, диметиланилин широко используется для синтеза красителей и других органических соединений. Так, напрнмер, прн взаимодействии двух молекул диметил-анилина с фосгеном образуется амииокегон (кетон Мих- [c.306]

    Л- А. Чугаев и Ф. В. Церевитинов разработали количественный метод определения подвижных атомов водорода в органических соединениях, содержащих группы ОН, СООН, 8Н, ЫНг, ЫНР или СН==С, взаимодействием этих соединений с метилмагнийиодидом, в результате чего образуется метан. [c.661]

    Замещение Mgl-группы в метилмагнийиодиде на атом водорода с образованием метана является методом количественного определения подвижного водорода в органических соединениях различных классов (реакция ЧУГАЕ В А — ЦЕРЕВИТИНОВА)  [c.210]

    Введение пирндилэтильной группы в молекулу органического соединения путем присоединения веществ с подвижным атомом водорода к винилпиридину  [c.312]

    Для органических соединений их молекулярная структура и характер содержащихся в них функциональных групп являются наиболее важными факторами, определяющими взаимодействие с полиамидами. Поведение неорганических кислот и их водных растворов зависит от подвижности иона водорода и его взаимодействия с амидной группой. Кислоты, являющиеся окислителями, такие как азотная кислота, могут взаимодействовать с макромолекулами полиамидов, приводя к разрыву химических связей главной цепи. Неорганические соли обычно не оказывают заметного влияния на полиамиды, но некоторые из них могут взаимодействовать с полимером при наличии в нем внутренних напряжений. Как и следовало ожидать, химическая активность полиамидов возрастает с температурой. Воздействие различных веществ на полиамиды может быть либо только физико-хими-ческим (и обычно определяется диффузией жидкости в полимер), иметь чисто химическую природу (взаимодействие реагентов с функциональными группами полимера) или сочетать оба эти механизма. [c.82]

    Прямым роданированием обычно называют реакции присоединения диродана к непредельным соединениям или реакции замещения водорода на родан при действии диродана или веществ, выделяющих родан, на различные органические соединения, содержащие подвижный водород. [c.35]

    Этим требованиям более полно удовлетворяют и потому нашли преобладающее применение неионогенные деэмульгаторы. Они почти полностью вытеснили ранее широко применявшиеся ионоактивные (в основном анионоактивные) деэмульгаторы, такие, как отечественные НЧК. Их расход на установках обессоливаьгая нефти составлял десятки кг/т. К тому же они биологически не разлагаются, и применение их приводило к значительным загрязнениям водоемов. Неионогенные ПАВ в водных растворах не распадаются на ионы. Их получают присоединением окиси алкилена (этилена или пропилена) к органическим соединениям с подвижным атомом водорода, то есть содержащим различные функциональные группы, такие как карбоксильная, гидроксильная, аминная, амидная и др. В качестве таковых соединений наибольшее применение нашли органические кислоты, спирты, фенолы, сложные эфиры, амины и амиды кислот. [c.181]

    Группа 4. Грамотрицательные аэробные палочки и кокки. Группа представлена 8 семействами. К семейству Pseudomonada eae относятся одиночные прямые или слегка изогнутые подвижные палочки. Движение осуществляется с помощью полярно расположенных жгутиков. Типичные представители семейства объединены в род Pseudomonas. Это в основном облигатно аэробные хемоорганогетеротрофы, потребляющие широкий набор органических соединений. Некоторые представители рода могут получать энергию также за счет окисления молекулярного водорода [c.165]

    Благодаря наличию чрезвычайно реакционноспособной двойной связи акрилонитрил легко конденсируется с различными органическими соединениями, обладающими подвижными атомами водорода или активными метиленовыми группами. Такие реакции, происходящие в присутствии небольших количеств конденсирующих веществ основного характера, являются реакциями типа реакщш Михаэля. Акрилонитрил присоединяется к веществам, содержащим подвижный атом водорода, т. е. как бы замещает атом водорода на группу H2 H2 N. Этот процесс обычно называют цианэтилирова-нием он может быть представлен следующим общим уравнением  [c.19]

    Реакции азосочетания используют для определения ароматических аминов, фенолов и соединений, которые при гидролизе или восстановлении образуют ароматические амины — изоцианаты, ароматические нитросоединения, некоторые альдегиды, кетоны. Вообще говоря, соли диа-зония являются фотометрическим реагентом на органические соединения, содержащие при атоме углерода подвижный атом водорода. Группа методов основана на образовании хинониминовых соединений (индофенола, индамина и др.). Их используют для определения фенолов, аминов, аминокислот, гидразидов, сульфамидов и щ). Вторая — на образовании полиметиновых соединений. Третья — на реакциях конденсации. Список можно продолжить. В спектрофотометрическом функциональном анализе использован поистине громадный опыт, накопленный химикамич)рганиками. [c.282]

    Гомотропилиден явился первым органическим соединением, строение молекул которого может быть описано лишь как среднее между двумя равноценными структурами. Крайним примером такого рода жо-лекул с флуктуирующими связями представляется бульвален (СюНю, т. пл. 96 °С)—соединение, для которого существует Ю /3 = = 1 209 600 структурно идентичных взаимопревращающихся подвижных структур (пермутаций). В этой структуре не существует фрагмента из двух атомов углерода, связанных продолжительное время друг с другом 10 атомов углерода непрерывно меняют свое положение, каждый из них комбинируется попеременно с любым из других за счет перегруппировки Коупа. При этом меняется геометрия молекулы (т. е. длины связей и углы между ними) две пермутации существенно различаются относительным расположением своих атомов. Этот случай определенно отличается от мезомерии, при которой делокализация л-связей происходит на основе фиксированного скелета а-связей. При валентной изомеризации каждый атом водорода попеременно занимает четыре разных положения (два винильных, Ьддо циклопропильное и [c.237]

    Ф. в. Церевитинов, основываясь на этих реакциях, разработал метод (прибор) количественного определения подвижного водорода в органических соединениях по объему выделяющегося метана. [c.261]

    Свойства реактивов Гриньяра как оснований используют для определения содержания подвижных атомов водорода в органических соединениях. Анализируемое соединение обрабатывают метилмагнийгалогенидом при этом выделяется метан в количествах, соответствующих числу подвижных атомов водорода в его молекуле  [c.159]

    В 1907—1919 гг. Ф. В. Церевитинов , основываясь на этих реакциях, разработал метод количественного определения подвижного водорода в органических соединениях по объему выделяющегося метана метод может быть применен и для количественного определения влажности (например, в растворителях)  [c.20]

    Каждая из этих реакций протекает количественно и имеет аналитическое применение как метод Чугаева-Церевитинова для качественного (по выделению газообразного метана) и количественного определения подвижного водорода в органических соединениях. Путем измерения объема метана, выделившегося при взаимодействии метилмагнийиодида с определенным количеством анализируемого соединения, вычисляют число молей подвижного водорода в образце. [c.671]

    Основная область научных исследований — химия и технология синтетических красителей. Предложил (1910) оригинальную теорию цветности органических соединений, во многом предвосхитившую современные квантовохимические взгляды по этому вопросу. Изучал подвижность водорода в таутоме-рах ароматического и гетероциклического рядов, а также кислорода, соединенного двойной связью с углеродом или азотом в альдегидах, кетонах и нитрозо-соединениях. Синтезировал ряд субстантивных красителей для хлопка. Предложил хиноидную классификацию красителей и сам термин краситель . Доказал наличие химического взаимодействия между красителями и волокнами белкового происхождения. Разработал точный способ идентификации красителей с помощью спектрофотометра с двойной щелью. Исследовал химизм процесса цветной фотографии. Разработал метод получения азокрасителей, при котором в одном аппарате происходили реакции как диазотирования, так и азосочетания. Предложил промыщленный способ получения фурфурола из подсолнечной лузги. [c.402]

    В молекуле дитизона имеется два атома водорода, способных замещаться на металл. Известно, что присутствие в органическом соединении группы = S (аналогично кетонной группе С = 0) увеличивает подвижность ближайшего водородного атома [50], т. е. увеличивает его кислотные свойства Поэтому дитизон обнаруживает способность к таутометрии  [c.309]

    Приведите примеры органических соединений (содержащих подвижной атом водорода), которые при взаимодействии с СНзМдЛ количественно образуют метан. Напишите реакции. [c.72]

    Химия фосфорорганических соединений за последние два десятилетия переживает период бурного развития. Это связано прежде всего с тем широким применением, которое нашли эти соединения в самых различных областях народного хозяйства. С каждым годом расширяется использование фосфорорганических соединений в качестве инсектицидов, фунгицидов, гербицидов и нематоцидов в сельском хозяйстве, лекарственных препаратов в медицине, мономеров, пластификаторов и стабилизаторов при производстве полимерных материалов, экстрагентов, растворителей, катализаторов, добавок, придающих материалам огнестойкость, улучшающих работу смазочных масел, и др. Большое практическое значение фосфорорганических соединений стимулировало исследования в области дальнейшего развития, расширения и изучения ранее известных реакций, строения и реакционной способности органических производных фосфора, привело к открытию новых путей синтеза и ряда новых интересных реакций. К реакциям этого типа следует отнести и рассматриваемую в обзоре реакцию присоединения фосфорорганических соединений с подвижным атомом водорода фосфинов, неполных эфиров фосфористой, тиофосфористой, фосфинистой и дитиофосфорной кислот, амидов кислот фосфора, фосфорсодержащих соединений с активной метиленовой группой и некоторых других типов соединений. К настоящему времени изучены реакции присоединения их по кратным углерод-углеродным, двойным углерод-кислородной, углерод-азотной, азот-азотной и азот-кислородной связям. В результате этих реакций образуются фосфины разнообразного строения, полные эфиры фосфиновых, тиофосфиновых, дитиофосфорных кислот, алкилфосфиновые и фосфинистые кислоты, эфироамиды фосфорных и эфироимиды фосфиновых кислот, а также некоторые другие типы органических соединений фосфора. Отдельные реакции этого типа, как, например, присоединение фосфинов, фосфористой и фос-форноватистой кислот к карбонильным соединениям, были известны еще в конце прошлого — начале нашего столетия. Однако в последующие годы они или не получили дальнейшего развития, или использование их было крайне ограниченным. Интерес к этим реакциям вновь проявился лишь спустя несколько десятилетий. Ряд новых [c.9]


Смотреть страницы где упоминается термин Водород в органических соединениях подвижный: [c.149]    [c.413]    [c.412]    [c.323]    [c.941]    [c.97]    [c.551]    [c.560]   
Основные начала органической химии том 1 (1963) -- [ c.356 ]




ПОИСК





Смотрите так же термины и статьи:

Водород соединения

Оксиэтилирование органических соединений г, подвижным атомом водорода

Органический водород



© 2025 chem21.info Реклама на сайте