Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Гидратация гетерогенная

    Реакция гидратации карбида кальция с образованием ацетилена представляет экзотермическую необратимую гетерогенную реакцию взаимодействия карбида кальция с водой  [c.248]

    Гидратация в паровой фазе этилена представляет гетерогенно-каталитическую обратимую экзотермическую реакцию, протекающую по уравнению  [c.274]

    В 1867 г. Г. Дикон разработал получивший всемирную известность хлорный процесс—получение хлора окислением НС1 воздухом над медными соединениями. В 1867 г. А. Гофман получил впервые формальдегид окислением метилового спирта воздухом над платиной. В 1871 г. М. Г. Кучеров открыл замечательную реакцию гидратации ацетилена разбавленной серной кислотой в присутствии ртутных солей, которая лежит в основе многих каталитических превращений ацетилена, его гомологов и производных. В 1875 г. Кл. Винклер разрешил, наконец, проблему каталитического окисления SO, в SO3 воздухом в присутствии платинового катализатора, разработав промышленный способ контактного синтеза серной кислоты. Этот вопрос имеет многолетнюю интересную историю, начиная с работ И. Деберейнера и патента П. Филлипса в 1831 г., рекомендовавшего также платиновый катализатор, по потерпевшего неудачу из-за неумения проводить очистку сернистого газа от контактных ядов. В 1877 г. М. М. Зайцев опубликовал свои исследования по восстановлению различных органических соединений водородом в гетерогенной фазе над платиной или палладием, предвосхитив по существу методику гидрирования, разработанную гораздо позднее. В том же 1877 г. Н. А. Меншуткин начал свои классические исследования по приложению химической кинетики к органическим ссединениям в области изучения скоростей этерификации различных карбоновых кислот спиртами. В 1878 г. А. М. Бутлеров открыл реакцию уплотнения олефинов под действием серной кислоты, что явилось преддверием к синтезу высокомолекулярных соединений и процессов алкили-рования, имеющих сейчас огромное значение. Г. Г. Густавсон провел ряд исследований по каталитическому действию галогенидов алюминия на органические соединения, несколько опередив работы Ш. Фриделя и Дж. Крафтса. [c.15]


    В зависимости от характера катализатора различают гомогенную и гетерогенную гидратацию. Гомогенная гидратация проводится главным образом в присутствии серной и фосс рной кислот. [c.157]

    Кинетика процесса гидратации полиминеральных зерен цемента имеет гетерогенно-диффузионный характер, лимитируется скоростями внутреннего массообмена через оболочки гидратированных [c.311]

    Растворением твердого тела в жидкости называют разрушение кристаллической структуры под действием растворителя с образованием раствора — гомогенной системы, состоящей из растворителя и перешедших в него молекул, ионов. Таким образом, растворение — это гетерогенная химическая реакция. Оно сопровождается сольватацией (если растворитель вода — гидратацией), т. е. образованием в растворе более или менее устойчивых соединений растворенных частиц с молекулами растворителя, часто переменного состава (см. разд. 4.3.1). Можно, однако, ввести следующ,ее разграничение. В случаях, которые мы будем называть физическим растворением, возможна обратная кристаллизация растворившегося вещества из раствора. Когда же растворитель или содержащийся в нем активный реагент так взаимодействуют с растворяемым веществом, что выделить растворившееся вещество из полученного раствора кристаллизацией невозможно, мы будем называть его химическим растворением. Такое деление условно, формально, но пользоваться им удобно. [c.213]

    Разработана полная математическая модель гетерогенно-каталитической гидратации оксида этилена, предложена конструкция реакторного узла для производства 80%-го водного раствора гликолей в количестве 5000 т/год. [c.5]

    Существуют три способа получения ацетальдегида из ацетилена гидратация ацетилена в жидкой фазе с ртутно-железным катализатором (способ М. Г. Кучерова), гидратация ацетилена в паровой фазе с гетерогенным катализатором (фосфаты меди) и гидролиз простых виниловых эфиров, которые получают винилированием спиртов (метод акад. А. Е. Фаворского и М. Ф. Шостаковского). [c.314]

    Типичные К. при гетерогенном катализе окисл.-восстановит. р-ций (окисления и восстановления, гидрирования и дегидрирования, разложения нестойких кислородсодержащих соед. и др.) — переходные металлы, их соед. и др. в-ва, способные отдавать и принимать электроны при взаимод. с реагентами (см., напр.. Палладиевые катализаторы, Ванадиевые катализаторы). В гомогенном катализе аналогичные р-ции протекают с участием комплексов переходных металлов (см. Комплексные катализаторы). Их каталитич. св-ва объясняются склонностью к образованию координац. связи с реагентами. Высокоактивные К. в кислотно-основных р-циях (крекинга, гидратации и дегидратации, гидролиза, нек-рых р-цйй полимеризации и изомеризации) — твердые и жидкие в-ва, способные отщеплять или присоединять протон при взаимод. с реагентами. При катализе апротонными к-тами взаимод. осуществляется через своб. пару электронов реагента (см. Кислотные катализаторы, Основные катализаторы). [c.248]


    К.-о. к. происходит при гидролизе крахмала, гидратации олефинов, этернфикации спиртов, алкилировании углеводородов, полимеризации и т. д., а также при мн. гетерогенно-каталитич. процессах, если пов-сти тв. тел обладают кис- [c.257]

    Многие гетерогенные процессы не связаны с химическими реакциями и основаны только на физико-химических явлениях. К таким процессам можно, например, отнести испарение без изменения состава, конденсацию, перегонку, растворение и экстрагирование, не сопровождающиеся химическими реакциями, кристаллизацию без гидратации и т. п. Химические гетерогенные процессы включают как одну из стадий химические реакции, которые идут в одной из фаз после перемещения туда реагентов или на поверхности раздела фаз. [c.151]

    Катализ катионитами. Гидратация окисп этилена в присутствии гетерогенного катализатора (сульфополистирольного катионита амберлит /Л-120) также протекает по реакции первого порядка [c.72]

    Гетерогенно-каталитические процессы нашли самое широкое применение в промышленном органическом синтезе, нефтехимии и нефтепереработке. С помощью гетерогенных катализаторов осуществляют процессы гидрирования и дегидрирования, каталитического крекинга, риформинга, гидрокрекинга, гидроочистки нефтяных фракций, окисления и окислительного аммонолиза, гидратации, полимеризации и другие важные многотоннажные химические процессы. [c.632]

    Гидратация с нертутными катализаторами. Один из крупных недостатков описанного способа состоит в применении токсичных и дорогостоящих ртутных солей в качестве катализаторов. Поэтому длительное время велись поиски нертутных катализаторов, которыми являются фосфорная кислота, фосфаты магния, цинка и кадмия. Все они менее активны по сравнению с ртутными солями и работают лишь ири высоких температурах как гетерогенные катализаторы. Из них нашла практическое применение смесь состава Сс1НР04-Саз(Р04)2, обладающая кислотными свойствами и содержащая металл той л<е груииы периодической системы, что и ртуть. Эта смесь активна при 350—400 °С. [c.196]

    Выщелачивание представляет гетерогенный процесс насыщения водного щелочного раствора оксидом алюминия, скорость которого зависит от дисперсности твердой фазы (боксита), концентрации раствора гидроксида натрия и температуры. Режим процесса выщелачивания определяется степенью гидратации оксида алюминия в боксите диаспор выщелачивают при 240°С и давлении 3 МПа гидроаргелит — при 100°С и давлении 0,1 МПа. Степень извлечения оксида ашоминия (X) до- [c.21]

    Мультиплетная теория позволяет приближенно рассчитать и предвидеть последовательность относительной скорости однотипных реакций некоторых классов на данном катализаторе или скорость данной реакции на разных однотипных катализаторах. Оправдалось предсказание теории о каталитической активности кадмия для дегидрогенизации углеводородов и пипиридина и ряд других примеров, Мультиплетная теория позволяет предсказать и объяснить ряд опытных фактов гетерогенного катализа, главным образом, для различных гетеролитических реакций гидрирования, гидратации, дегидрирования, дегидратации и др. [c.445]

    С2Н4. Вначале это была довольно дорого обходившаяся сернокислотная гидратация, но уже через несколько лет ее заменила более эффективная прямая гидратация на гетерогенном твердом катализаторе. Спирт стал более дешевым, но производство бутадиена на его основе все равно не стоило развивать. Дегидрирование бутана оказалось дешевле, и эта технология постепенно вытеснила этанол из промышленности синтетического каучука. [c.110]

    Применяемые для изготовления топливного оборудования металлы (сталь, бронза и др.) всегда электрохимически гетерогенны, имеют неоднородную поверхность из-за разнородности химического (микровкпючения примесных металлов, оксиды) и фазового состава, наличия внутренних напряжений в металла. Жвдкая фаза также неоднородна по составу и концентрации растворенных веществ, по температуре и пр. Неоднородные участки всегда различаются по величине электродного потенциала, а, следовательно, по активности поверхностных катионов. Так, например, на поверхности стали с микропримесью меди с большей интенсивностью протекает гидратация ионов железа ( Ес > Ере ) Схема и состав элементарного объема системы, в которой может протекать электрохимическая коррозия, приведены ниже  [c.55]

    Гетерогенная гидратация в паровой фазе может быть осуществлена непрерывным способом. Она протекает в присутствии различных катализаторов, обладающих, как правило, кислотными свойствами. Такими катализаторами являются активированная окись алюминия с добавками СиО, МпО, Н3РО4, окислы вольфрама и окись цинка, нанесенные на силикагель, фосфаты меди, цинка, кадмия. [c.157]

    В условиях гетерогенной гидратации ацетилена в паровой фазе в присутствии катализаторов 22пО-ШаОБ или 2Сс10- 20б при температуре 440—470° С сразу получают из ацетилена ацетон. [c.160]


    Активность гетерогенных катализаторов зависит от физического или химического сродства катализатора к одному или нескольким реагентам. Так, платина, никель, медь и палладий, катализирующие реакции гидрирования и дегидрирования, легко адсорбируют водород, образуя с ним поверхностные соединения типа Ме—Н, а палладий даже способен растворять его. Катализаторы реакций гидратации и дегидратации А12О3 и А12(504)з образуют гидратные соединения с водой. На поверхности платины, используемой в качестве окислительного ката- [c.270]

    Предлагаемое издание является первым учебником по курсу физической химии вяжущих материалов. В нем рассматриваются физико-химические процессы, протекающие при измельчении материалов и термическом превращении сырьевых смесей, излагаются представления о химических связях в твердых телах, элементы химической термодинамики, химического равновесия, элементы теории кинетики гетерогенных реакций, химических процессов ми-нералообразования клинкера, физико-химические основы процессов гидратации цемента, коррозии цементного камня. [c.3]

    Алкины легко присоединяют воду (гидратация), образуя спирты, кислоты. Присоединение Н2О идет в присутствии катализатора — Н 804 (реакция М. Г. Ку-черова, открыта в 1881 г.), либо над гетерогенными катализаторами. Сначала образуется непредельный спирт, а затем альдегид (или кетон)  [c.199]

    Для разработки высокопроизводительных энерго- и ресурсосберегающих технологий этиленгликоля и холинхлорида была получена математические модели и алгоритмы расчета процессов гетерогенно-каталитической гидратации оксида этилена и синтеза холинхлорида в присутствии гомогенных катализаторов. С их использованием осуществлен поиск и анализ эффективных ус1ювий синтеза, жидкофазных реакторных узлов различного типа. Найдены условия и аппаратурное оформление процессов, позволяющие существенно снизить энергетические затраты и повысить качество получаемых продуктов. [c.5]

    Этилен- и пропиленгликоли продукты находят широкое применение в качестве растворителей, антифризов и др. Мировой объем их производства превышает 15 млн. тонн в год [1]. В настоящее время гликолю получают путем некаталитической гидратации а-оксидов, которую осуществляют при 140-200°С и 20-40 ат, с использованием 8-10 кратного массового избытка воды по отношению к а-оксиду. Основными недостатками этого процесса являются низкий выход моногликоля (менее 90%), а также высокие энергозатраты при вьщелении гликолей из разбавленных (12-15%) водных растворов. Одним из основных путей повышения эффективности процесса гидратации является использование гетерогенных катализаторов [2-6]. [c.66]

    В лабораторных и опытно-промышленных реакторах (адиабатический реактор объемом 7,5 л, диаметр = 89 мм Высота = 1200 мм) непрерывного действия проведено испытание ряда гетерогенных промышленных анионитов в бикарбонатной форме (ВП-1ЛП, ВП14Р, ЧФО, Dowex MSA-1, Dowex SBR). Показано, при проведении процесса гидратации при температурах до 95 С селективность образования моногликоля практически не меняется во времени, а при увеличении температуры свыше 95°С возрастает скорость дезактивации катализатора. Кроме того, обнаружено, что при температуре гидратации выше 95 С наблюдается также увеличение объема катализатора (набухае-мость), при этом скорость набухания также растет с увеличением температуры. [c.66]

    Этиленгликоль, получаемый по реакции гидратации оксида этилена, является одним из важнейших продуктов основного органического синтеза. Именно поэтому не стихает интерес как к поиску новых селективных катализаторов процесса, так и к получению адекватного кинетического уравнения, позволяющего управлять процессом. На (зснове представлений о механизме реакции гидратации и кинетических закономерностей была выведена математическая модель гетерогенно-каталитического (с использованием в качестве катализатора анионита) трубчатого реактора г-идратации оксида этилена для изотермических условий. [c.5]

    Необходимая четкость разделения и чистота газовых фракций зависят от условий их дальнейшей технологической переработки. Так, для получения полиэтилена глубокой полимеризацией под давлением выше 1000 ати требуется необычайно высокая чистота исходного этилена (99,9%). Однако новейшие способы полимеризации при низком давлении над гетерогенными катализаторами и в присутствии растворителей позволяют снизить чистоту сырья до 95% [24]. Для получения этанола гидратацией над фосфорнокислым катализатором требуется этилеп 97 %-ной чистоты, а старейший способ производства этилового спирта и эфира при помощи серной кислоты позволяет использовать газ с 35—95%-пым содержанием С2Н4. При алкипирова-пии бензола этиленом в присутствии хлористого алюминия желательна чистота этиленового сырья не ниже 90%, а с фосфорнокислым катализатором может использоваться этан-этиленовая смесь. Окись этилена получается и 95%-ного этилена. [c.158]

    Здесь уместно указать, что наряду с типичными необратимыми и обратимыми системами, согласно классификации Зигмонди и Фрейндлиха, существуют и про1иежуточные системы, которые труд,-но отнести к какому-нибудь одному из обоих классов. Это, например, золи гидроокисей некоторых металлов А1(0Н)з, Ре(ОН)з, 8п(ОН)4. Исследование с помощью оптических методов указывает на присутствие в этих системах коллоидных частиц (агрегатов молекул). Имеются и другие основания считать эти системы гетерогенными. Вместе с тем эти системы обратимы, могут быть получены с достаточно большой концентрацией дисперсной фазы и менее чувствительны к электролитам, чем типичные лиофобные системы. Такие свойства этих систем обычно объясняют исключительно большой гидратацией содержащихся в них частиц. Однако в последнее время ряд исследователей стали считать, что в этих системах в зависимости от способа получения дисперсная фаза мо--жет находиться как в виде коллоидных частиц, так и в Виде макромолекул. Природа этих растворов до сих пор окончательно не ясна. К этому вопросу мы еще возвратимся в гл. IX и XIV. [c.27]

    Учитывая способность окиси этилена к полимеризации под влиянием различных веществ, можно полагать, что активность гетерогенных катализаторов по мере их эксплуатации будет снижаться из-за отложения на них продуктов полимеризации или изомеризации окиси этилена. По-видимому, этими причинами объясняется то, что в литературе отсутствуют сведения об осуществлении процесса парофазной гидратации окиси этилена в промышленных условиях. [c.97]

    Гетеролитический механизм осуществляется при процессах кислотно-основного гетерогенного катализа, таких, как дегидратация спиртов, гидратация олефивов, крекинг, изомеризация и алкилирование углеводородов, гидролиз эфиров, амидов и т. д. Типичными катализаторами таких процессов являются соединения, способные передавать или принимать протон от реагентов, образовывать координационные связи путем отдачи или присоединения электронной пары. К катализаторам кислотно-основного типа относятся следующие вещества. [c.639]


Смотреть страницы где упоминается термин Гидратация гетерогенная: [c.46]    [c.75]    [c.2]    [c.316]    [c.140]    [c.489]    [c.46]    [c.146]    [c.149]    [c.10]   
Краткая химическая энциклопедия Том 1 (1961) -- [ c.0 ]

Краткая химическая энциклопедия Том 1 (1961) -- [ c.0 ]




ПОИСК







© 2024 chem21.info Реклама на сайте