Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Аномальная электропроводность НэО и ОН-ионов

    Аномальные электропроводности иона гидроксила и других ионов. Электропроводность иона гидроксила в воде меньше, чем электропроводность иона водорода, но тем не менее оиа превышает в 3 раза электропроводности большинства других ионов (ср. табл. 13). Вероятно, аномальная электропроводность и в этом случае обусловлена переходом протона, на этот раз от молекулы воды к иону гидроксила [c.108]


    Аномальная подвижность ионов водорода и гидроксила, значительно превышающая подвижность всех других ионов, заставляет предполагать, что движение этих ионов в водных растворах подчинено особому механизму. Современная теория аномальной подвижности водородных и гидроксильных ионов, разработанная Берналом и Фаулером, представляет собой развитие идеи о механизме электропроводности электролитов, высказанной русским ученым Гротгусом еще в самом начале прошлого века. [c.118]

    Выражение (229) совпадает по форме с эмпирическим уравнением (224), справедливым для слабых электролитов. Однако бесполезно пытаться получить по классической теории уравнение, подобное эмпирическому закону квадратного корня Кольрауша, справедливому для растворов сильных электролитов. Классическая теория электропроводности, основанная на теории электролитической диссоциации Аррениуса, не в состоянии истолковать ни изменения чисел переноса и ионных подвижностей с концентрацией, ни близости температурных коэффициентов электропроводности и вязкости, ни аномальных подвижностей ионов водорода и гидроксила. Растворы электролитов (в отличие от допущений теории Аррениуса) нельзя принимать за идеальные системы ни в состоянии равновесия, ни при прохождении через них электрического тока. [c.112]

    Б. Особенности электропроводности неводных растворов. В водных растворах, а также в неводных растворителях с высокой диэлектрической постоянной эквивалентная электропроводность обычно возрастает с ростом разведения (см. рис. 16) в результате увеличения подвижности ионов, а для слабых электролитов также и степени диссоциации. Эта закономерность нарушается в неводных растворителях с низкой диэлектрической проницаемостью, что было впервые обнаружено в 1890 г. И. А. Каблуковым при исследовании растворов хлористого водорода в амиловом спирте. Электропроводность этих растворов возрастала с ростом концентрации (т. е. с уменьшением разведения) в определенном интервале. Такое явление называется аномальной электропроводностью. В растворителях с диэлектрической проницаемостью е<с35 на кривых зависимости эквивалентной электропроводности от разведения можно наблюдать максимум и минимум (рис. 23). П. Вальден установил, что разведение, отвечающее минимуму электропроводности, и диэлектрическая проницаемость растворителя связаны соотношением e /v и 30. [c.77]

    На кривой молекулярной электропроводности раствора калия в жидком аммиаке (рис. 15) при определенном составе раствора наблюдается минимум проводимости, после чего она закономерно растёт с разведением, приближаясь к некоторому предельному значению. Можно было бы, воспользовавшись формальной аналогией между аномальной электропроводностью и электропроводностью растворов металлов в жидком аммиаке, попытаться и здесь применить представления об образовании ионных тройников. Однако проводимость растворов металлов в жидком аммиаке настолько велика, что никакие комплексные или простые ионы не в состоянии ее обеспечить. Природа этих интересных по своим свойствам растворов отлична от растворов электролитов в воде или в неводных растворителях. [c.125]


    Аномальную электропроводность иона водорода в метиловом и этиловом спиртах, величина которой больше, чем в других неводных растворах, хотя и несколько меньше, чем в случае водного раствора, также можно объяснить переходом протона аналогично тому, как это предполагается для воды. Таким образом, если ион водорода существует в спирте ROH в виде иона ROH , то при прохождении тока происходит процесс [c.108]

    Эстафетным механизмом объясняют аномальную электропроводность в безводных фтористом водороде и серной кислоте. Для HF аномальной оказывается подвижность ионов F-, по-видимому, в результате следующих процессов  [c.77]

    Аномальная электропроводность может быть объяснена, если учитывать ассоциацию ионов с образованием ионных пар и более сложных частиц (комплексных ионов, ионных тройников, квадруполей и т. п.). В разбавленных растворах электролита МА электропроводность обусловлена ионами М+ и А-. С ростом концентрации ионы противоположного знака объединяются в незаряженные ионные пары М+, А , что приводит к падению электропроводности. При дальнейшем увеличении концентрации электропроводность может возрасти за счет образования ионных тройников (МАМ)+ и (AMA)-, непосредственно участвующих в переносе тока. Учитывая образование ионных тройников, Р. Фуосс и Ч. Краус получили следующее выражение для аномальной электропроводности  [c.77]

    Электропроводность любых электролитов, слабых и сильных, в сравнительно разбавленных растворах возрастает с разбавлением. Это является следствием либо увеличения степени диссоциации, либо увеличения подвижности ионов, либо того и другого. Однако при исследовании растворов хлористого водорода в амиловом спирте в 1890 г. И. А. Каблуков нашел так называемую аномальную электропроводность. Он установил, что при значительном увеличении концентрации (при уменьшении разбавления) электропроводность хлористого водорода в амиловом спирте не уменьшалась, а наоборот, возрастала (рис. 26). Это возрастание электропроводности не могло быть объяснено на основании теории Аррениуса, не может быть объяснено и на основании теории Дебая — Онзагера. [c.104]

    Таким образом, это правило может быть в первом приближении объяснено на основании теории Дебая. В действительности аномальная электропроводность является следствием более глубокого взаимодействия между ионами (см. гл. II). [c.105]

    Для растворителей с диэлектрической проницаемостью, меньшей 25, для которых наблюдается аномальная электропроводность, величины , вычисленные по осмотическим данным, меньше, чем величины г, вычисленные по электропроводности. Это говорит о том, что в растворе помимо процесса диссоциации идут процессы ассоциации. Можно представить себе, что сначала происходит ассоциация молекул и эти ассоциированные молекулы диссоциируют дальше на сложные комплексные ионы  [c.107]

    Определение констант диссоциации в уксусной кислоте осложнено большой солевой ошибкой, связанной с низкой диэлектрической проницаемостью растворителя (см. гл. V). Возникающая ассоциация ионов приводит к аномальной электропроводности и затрудняет получение точных результатов. [c.280]

    Аномальная электропроводность Н3О+- и ОН -ионов [c.86]

    Таким образом, явление аномальной электропроводности связано с ассоциацией растворенного электролита. Растворенный электролит ассоциирует в более сложные молекулы (комплексные молекулы), которые затем диссоциируют на комплексные сложные ионы. Саханов называл эти ионы проводящими ток комплексами. [c.222]

    Электропроводность любых электролитов, слабых и сильных, в сравнительно разбавленных растворах возрастает с разбавлением. Это является следствием либо увеличения степени диссоциации, либо увеличения подвижности ионов, либо того и другого. Однако при исследовании растворов хлористого водорода в амиловом спирте в 1890 г. И. А. Каблуков нашел так называемую аномальную электропроводность. Он установил, что при значительном увеличении концентрации (при уменьшении разбавления) электропроводность хлористого водорода в амиловом спирте не уменьшалась, а наоборот, возрастала (рис. 29). Это [c.132]

    Впервые минимумы электропроводности были обнаружены в системах с сильным взаимодействием между электролитом и растворителем. Особенно много таких систем изучено школой В. А. Плотникова. Однако позже выяснилось, что в системах с низкими д. п. такие минимумы появляются всегда. Такой вывод можно сделать прежде всего благодаря исследованиям Крауса и Фуосса с сотр. по электропроводности солей в бензоле, диоксане и т. п., начатым в 1933 г. [14]. Поскольку в то время не было получено каких-либо данных о сильных взаимодействиях ион-растворитель в таких системах, стало традицией считать, что специфическое взаимодействие здесь отсутствует. Объяснение аномальной электропроводности было предпринято поэтому с позиций закона действия масс в применении к ионной ассоциации с введением гипотезы ионных тройников [c.269]


    Для аномально подвижных ионов (Н" , ОН"), у которых имеются заметные отклонения от правила Вальдена (постоянство произведения предельной эквивалентной электропроводности ионов на вязкость растворителя т], т. е. = onst), значения энергии активации подвижности, соответствующие прототропному механизму миграции этих ионов, ниже (см. табл. 50). [c.353]

    Аномальная электропроводность связанного раствора электролита Хс обусловлена, во-первых, изменением концентрации ионов в его пленке и, во-вторых, уменьшением их подвижности во внешней части двойного электрического слоя. В большинстве случаев полагают, что концентрация ионов в указанном слое подчиняется экспоненциальному соотношению Больцмана и оказывает решающее влияние на изменение удельной электропроводности связанного раствора в случае малой его минерализации. Подвижность ионов пропорциональна скорости их движения, которая зависит от действующей на ионы движущей силы внешнего электрического поля, сопротивления среды, определяющейся ее вязкостью, и электрических сил, зависящих от величины заряда поверхности минеральной частицы и степени взаимодействия между гидратированными ионами. [c.21]

    Явления аномальных электропроводностей (экстремумы на кривых зависимости эквивалентной или удельной электропроводности от концентрации) в концентрированных растворах электролитов или в растворителях с низкой диэлектрической постоянной объясняются образованием ассоциированных соединений, которыми, согласно одним представлениям, являются ассоциированные молекулы (Н. С. Са-ханов), а по другим — ионные пары, или ионные двойники (В. К. Семенченко). [c.42]

    Кривые, подобные кривым аномальной электропроводности электролитов в неводных органических растворителях, были получены при изучении растворов щелочных и щелочноземельных металлов в жидком аммиаке. На кривой молекулярной электропроводности раствора калия в жидком аммиаке (рис. 16) при определенном составе раствора наблюдается минимум проводимости, после чего она закономерно растет с разведением, приближаясь к некоторому предельному значению. Можно было бы, воспользовавшись формальной аналогией между аномальной электропроводностью и электропроводностью растворов металлов в жидком аммиаке, попытаться и здесь применить представления об образовании ионных комплексов. Однако проводимость растворов металлов в жидком аммиаке настолько велика, что ионы (и комплексные, и простые) не в состоянии ее обеспечить. Эти интересные растворы значительно отличаются по своей природе от растворов электролитов в воде или в органических растворителях. [c.124]

    Ассоциация ионов в растворах. Если раствор электролита содержит достаточно большое количество ионов, то между ними возникает электростатическое взаимодействие, влияющее на свойства раствора. Еще в 1890 г. И. А. Каблуковым было обнаружено явление аномальной электропроводности. Обычно с увеличением разведения в растворах слабых и сильных электролитов увеличивается как степень диссоциаций, так и подвижность ионов, т. е. увеличивается электропроводность при уменьшении концентрации электролита. Однако при исследовании растворов хлористого водорода в амиловом спирте И. А. Каблуков обнаружил аномальное увеличение электропроводности раствора при значительном повышении концентрации НС1. Позже этот факт был объяснен обра-зованием сложных комплексных ионов, растворы которых хорошо проводят электрический ток. Таким образом, для растворов характерно не только явление диссоциации, но и обратное ему явление ассоциации — соединение ионов друг с другом, а также ионов с молекулами растворенного вещества. [c.231]

    Нп гидродинамическая, ни электростатическая теории не дают полного и количественного истолкования и онисання электропроводности растворов электролитов. В частности, пи одна из ннх пе позволяет раскрыть молекулярный механизм миграции ионов, выяснить природу стал.ни, определяющей скорость процесса, найти энергию активации, объяснить причины аномально высокой ионной электропроводности ионов водорода и гидроксила и т. д. [c.128]

    Ни классическая теория электропроводности, ни современная теория Дебая — Онзагера не могут служить основой для истолкования явления аномальной электропроводности. Учет явления сольватации также не дает возможности получить кривые эквивалентная электропроводность — разведение (к — V) с экстремумами. Впервые теория аномальной электропроводности была сформулирована в 1913—1916 гг. Сахановым на основе представлений об ассоциации электролитов, которая наиболее отчетливо проявляется в растворителях с низкой диэлектрической постоянной и приводит к появлению комплексных молекулярных и ионных соединений. По Саханову, в концентрированных растворах, кроме молекул электролита МА, имеются ассоциированные молекулы (МА)х, находящиеся в равновесии с простыми молекулами [c.120]

    Образование ионных пар в растворах проявляется в отклонении от линейности экспериментальной зависимости Я от с /г, соответствуюш ей закону Кольрауша и теории Дебая — Онзагера для полностью диссоциированных электролитов. Такое отклонение от линейности и наличие минимума на кривой зависимости Я от с г получпло название аномальной электропроводности и впервые было установлено в 1890 г. И. А. Каблуковым при изучении растворов хлорида водорода в амиловом спирте. [c.179]

    И. А. Каблуков и В. А. Кистяковский первые" указали путь, по которому пошло развитие современной теории растворов, — путь сочетания гидратной теории, созданной Д. И. Менделеевым, с теорией электролитической диссоциации, разбитой Аррениусом. И. А. Каблуков первый высказал важную для теории растворов идею о гидратации ионов электролитов им же в 1889 г. было открыто явление аномальной электропроводности. [c.18]

    Саханов разработал теорию комплекснопроводящих ионов , объясняющую аномальную электропроводность и общую картину зависимости % = f (с). Согласно этой теории, растворенное вещество, с одной стороны, диссоциирует на простые ионы, а с другой — ассоциирует в агрегаты, диссоциирующие затем на комплексные ионы. Теория Саханова оказалась настолько соверщенной, что даже после того, как по отнощению к сильным электролитам была оставлена теория Аррениуса, она не потеряла своего значения. [c.53]

    Теория ассоциации ионов была развита главным образом в связи с необходимостью объяснить открытое И. А. Каблуковым явление аномальной электропроводности растворов электролитов. Свойства ионов в теории ионной ассоциащш предполагаются такими же, как и в теорип Дебая—Хюккеля. [c.432]


Смотреть страницы где упоминается термин Аномальная электропроводность НэО и ОН-ионов: [c.440]    [c.274]    [c.41]    [c.8]    [c.134]    [c.132]   
Смотреть главы в:

Теоретические основы электрохимии 1972 -> Аномальная электропроводность НэО и ОН-ионов




ПОИСК





Смотрите так же термины и статьи:

Аномальная электропроводность



© 2024 chem21.info Реклама на сайте