Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Промышленный синтез химических продуктов

    Промышленность основного органического синтеза является относительно МОЛОДОЙ отраслью химической промышленности. Если производство химических продуктов на основе углеводородов ароматического ряда получило широкое развитие еще во второй половине XIX века благодаря использованию в качестве сырья продуктов сухой перегонки каменного угля, то промышленность основного органического синтеза возникла только после первой империалистической войны. Возникновению и развитию этой новой отрасли промышленности способствовало появление и притом в громадных количествах углеводородного сырья, в основном алифатических углеводородов. Обилие этого вида сырья появилось в результате новых прогрессивных методов переработки нефти — деструктивной переработки (крекинг, пиролиз). [c.5]


    ПРОМЫШЛЕННЫЙ СИНТЕЗ ХИМИЧЕСКИХ ПРОДУКТОВ [c.208]

    До тех пор, пока использование парафинов для синтеза химических продуктов было ограниченным, потребность в них не превышала 70—80 тыс. т в год. Основная масса парафинов использовалась в производстве солидолов, смазочных материалов, в бумажной, спичечной, электротехнической, пищевой и других отраслях промышленности. Позднее парафины во все возрастающем объеме начали использовать в качестве сырья для выработки ряда синтетических про ктов. Первым таким продуктом явились синтетические жирные кислоты. Их производство было организовано на Шебекинском комбинате в 1953 г. Позднее были сданы в эксплуатацию новые крупные мощности по выработке СЖК. [c.138]

    Коксовым газом называется газ, получаемый нагреванием каменного угля до 900—1100°С без доступа воздуха. Этот газ в чистом виде или в смеси с природным газом используется в качестве топлива для нагревания мартеновских печей, печей стекольной и керамической промышленности, а также в коммунальном хозяйстве. Кроме того, коксовый газ служит сырьем три синтезе химических продуктов. [c.449]

    Бутадиен используется для производства синтетического каучука и в значительно меньших количествах для синтеза химических продуктов (адипонитрила, производства ударопрочного полистирола, синтеза малеинового ангидрида и др.). Из синтетических каучуков на основе бутадиена наиболее распространен бутадиен-стирольный, затем полибутадиеновый и нитрильный. Основными промышленными методами получения бутадиена являются дегидрирование бутиленов дегидрирование н-бутана извлечение бутадиена из фракции С4, получаемой при пиролизе. [c.150]

    Существуют два основных направления переработки синтез-газа. Первое - превращение синтез-газа в этилен и другие углеводороды, которые, в свою очередь, могут быть переработаны в промышленно важные химические продукты. Второе направление - прямое преврашение синтез-газа или метанола, полученного из синтез-газа, в целевые продукты органического синтеза. [c.305]

    Есть ли возможность осуществления нуклеофильного щения в арилгалогенидах в мягких условиях Вопрос становится актуальным при организации промышлен-производства химического продукта, получение кото-включает реакцию подобного типа Рассмотрим эту ацию на примере синтеза пикриновой кислоты, кото-находит широкое практическое применение в качестве сителя, взрывчатого вещества, аналитического реагента можны две схемы ее получения из доступного сырья — ола [c.465]


    Совершенно очевидно, что парофазный высокотемпературный крекинг дает газ, весьма ценный с точки зрения синтеза химических продуктов, так как главной составной частью его являются газообразные олефины. Как уже было сказано выше, производство больших количеств газообразных олефинов посредством парофазного крекинга является фактом первостепенной важности для химической промышленности, так как эти олефины могут быть превращены в целый ряд химических соединений, имеющих большую промышленную ценность. [c.130]

    Нагревание углеводородов в присутствии кислорода сопровождается их полным сгоранием или неполным окислением. Полное сгорание происходит при применении углеводородов в качестве моторного или бытового топлива. Процесс неполного окисления углеводородов при сравнительно высоких температурах является одним из важнейших способов превращения их в химические продукты и полупродукты. Многие из них широко используются в промышленности для производства синтез-газа, ацетилена, сажи и других полупродуктов. [c.13]

    Книга начинается с введения, в котором показано, как следует увязывать технические аспекты промышленного производства химических продуктов с экономическими и социологическими аспектами. Гл. 2 посвящена видам сырья, на которых базируется промышленность органического синтеза. В последующих четырех главах рассматриваются процессы получения первичных органических продуктов, включая полупродукты для производства пластмасс, волокон и др. Все эти пять глав (гл. 2—6) относятся преимущественно к нефтехимической промышленности. В гл. 7 обсуждаются различные факторы, которые принимают во внимание при выборе оптимального технологического процесса. [c.10]

    Центробежные компрессоры с паровым и электрическим приводом являются основным видом компрессорных машин Б металлургическом и коксохимическом производствах здесь они служат для подачи дутьевого воздуха и газов — основных или побочных продуктов технологического цикла. Эти машины получают распространение в системах дальнего газоснабжения. Осевые компрессоры широко используются в газотурбинных установках. Поршневые компрессоры применяются в металлообрабатывающей и машиностроительной промышленности для сжатия воздуха, приводящего в действие пневматический инструмент и прессы. В химической промышленности газовые многоступенчатые компрессоры используются в циклах синтеза химических продуктов при высоком давлении. В последнее время сжатый воздух, получаемый от поршневых компрессоров, находит применение в текстильной промышленности как энергоноситель для проведения ткацкого процесса. [c.22]

    Применяют главным образом в качестве растворителя в различных отраслях промышленности, а также для синтеза химических продуктов. Уд. вес при 20°—0,870—0,890 г/см . Выпускают двух марок А и Б. [c.768]

    Процессы переработки нефти известны давно. Примерно до 1885 г. имелись установки, на которых из нефти отгонялся керосин, используемый для освещения, а остаток сжигался, как котельное топливо. Появление автомобильного, а затем авиационного транспорта с начала нынешнего столетия выдвинуло необходимость получения в возрастающих количествах бензина, а затем успехи в области промышленного получения химических продуктов потребовали новых сырьевых ресурсов. Источником сырья становится нефть. Появляется промышленность так называемого нефтехимического синтеза, для которой характерна глубокая переработка нефти и попутных газов с получением не только различных топлив и смазочных материалов, но и сырья для производства пластических масс, химических волокон, синтетических каучуков, моющих средств и т. п. Создание процессов глубокой переработки нефти было связано [c.470]

    Рассмотренные выше закономерности относились к схеме, которая включает лишь одну стадию химического превращения сырья. Промышленный синтез органических продуктов нередко основан на процессах, состоящих из нескольких химических стадий, вследствие чего связь выхода конечного продукта и показателей отдельных стадий соответственно усложняется. [c.24]

    Применяется в качестве растворителей в различных отраслях промышленности и для синтеза химических продуктов. [c.316]

    Несколько лет тому назад потребность в синтетических жирных кислотах почти полностью определялась масштабами их использования в мыловаренной промышленности. Но на основании работ, проведенных в научно-исследовательских институтах и на промышленных предприятиях, была выявлена возможность широкого использования синтетических жирных кислот для синтеза целого ряда важных химических продуктов. К числу новых направлений использования синтетических жирных кислот в первую очередь следует отнести производство высших жирных спиртов, флотореагентов, пластификаторов, синтетических смазочных масел и других продуктов. [c.148]


    ДЛЯ нефтехимического синтеза. Было организовано и получило широкое развитие промышленное использование природных и попутных нефтяных газов для производства сельскохозяйственных удобрений, спиртов, полиэтилена, полипропилена, синтетического каучука, синтетических волокон, пластмасс и многих других ценных химических продуктов и материалов. [c.14]

    Производства азотное, полимерных материалов, продуктов органического синтеза, основной химии — расходуют более 70% электрической и более 80% тепловой энергии, потребляемых химической промышленностью. Наиболее энергоемкими из химических продуктов являются аммиак, аммиачная селитра, азотная кислота, желтый фосфор, синтетический каучук, химические волокна, пластмассы и некоторые другие. [c.303]

    Проектирование химических производств или предприятий — это процесс разработки проекта данного объекта химической промышленности, который начинается с выбора метода химического синтеза целевого продукта или с проведения теоретических и экспериментальных исследований физико-химиче-ской сущности вновь разрабатываемых химико-технологических процессов (ХТП) производства требуемого химического продукта, а заканчивается пуском в эксплуатацию построенного промышленное объекта. [c.14]

    В эскизном проекте или в предпроектной разработке обосновывается схема химического синтеза целевого продукта выбираются район строительства и строительная площадка определяется очередность ввода мощностей устанавливаются основные технические решения и ориентировочные технико-экономические показатели (ТЭП) производства выявляются возможность и. целесообразность строительства проектируемого объекта химической промышленности. [c.14]

    В- крупных масштабах в промышленности организовано производство всех изомеров ксилола. В значительно меньших объемах производятся псевдокумол, дурол, мезитилен и цимолы. Основным источником получения ароматических углеводородов Са— Сю являются процессы переработки нефти. Химические продукты коксования угля практически нигде не используются для выделения отдельных изомеров ксилола и лишь в очень незначительном масштабе применяются для получения углеводородов Сд. Для отдельных компонентов разрабатываются и применяются различные методы синтеза. [c.247]

    Конденсация пара из парогазовой смеси имеет широкое распространение в промышленности. В химической технологии эти процессы используются, ндпример, для конденсации аммиака из азотоводородной смеси после синтеза, для фракционированной конденсации углеводородных смесей из газов пиролиза нефтяного сырья в производствах низших олефинов (этилена, пропилена), для конденсации органических продуктов в присутствии неконденсирующихся газов, для конденсации азота из азотогелиевой смеси в установках очистки гелия от примеси азота и во многих других производствах. В холодильной технике конденсация паров хладагентов часто происходит в присутствии небольших количеств не-конденсирующегося воздуха. То же имеет место и при конденсации отработанного водяного пара в паросиловых установках, когда водяной пар содержит примесь воздуха. [c.148]

    При рассмотрении современных каталитических производств экономические секреты фирм не раскрываются. Следует также иметь в виду, что для синтеза большинства химических продуктов существует несколько конкурентоспособных процессов. Основной упор делается на промышленную практику, а не на теорию, кинетику и механизмы реакций, так как по этим важным аспектам катализа уже имеются превосходные обзоры. [c.5]

    Аммиак имеет большое промышленное значение. В основном он используется для производства удобрений и является начальным продуктом для промышленного синтеза многих химических веществ. Азотную кислоту получают исключительно из аммиака. Аммиак производят обычно на крупных предприятиях с производительностью до 1 тыс. т/сут. Для дальнейшей переработки аммиак транспортируют на другие предприятия автомобильным, железнодорожным транспортом или по трубопроводам. Как отмечалось выше, аммиак транспортируют либо в сжиженном виде, либо охлажденным. Отметим, что транспортировка аммиака в охлажденном " виде более безопасна. Мировое производство аммиака примерно совпадает по количеству с мировым производством хлора. [c.385]

    Отечественная промышленность органического синтеза с каждым годом увеличивает выпуск и ассортимент химических продуктов. Среди них можно указать разнообразные мономеры и на их основе синтетические смолы, каучуки, волокна, пластмассы, клеи, красители и большое количество различных лакокрасочных и смазочных материалов, растворителей, поверхностно-активных веществ, ядохимикатов, флотореагентов, антифризов и антидетонаторов, взрывчатых и лекарственных препаратов, фотореактивов, душистых соединений и т. п. [c.160]

    На синтез нового продукта часто требуется меньше времени, чем на исследования его токсичности. В промышленности обращается много химических веществ (по неполным данным, около 50 тыс.), токсичность исследована для немногим более 1,4 тыс. веществ. С целью оперативного проведения исследовательских работ для отдельных веществ устанавливают ориентировочные безопасные уровни воздействия вредных веществ в воздухе рабочей зоны (ОБУВ). Во многих отраслевых НИИ [c.131]

    Современное промышленное производство основных химических материалов, как неорганических, так и органических, осуществляется методами химического синтеза. В качестве исходных материалов для осуществления промышленного синтеза в настоящее время широко используются природные газы, например газы атмосферы — азот и кислород, а также залегающие в пластах горючие газы, главной составной частью которых является метай. Кроме того, в качестве исходных вещести для химических производств приобрели очень большое значение газы, получаемые попутно при добыче или первичной обработке полезных ископаемых, напрпмер коксовый газ, продукты газификации топлива, бе.-1ные сернистые газы, попутные нефтяные газы. [c.7]

    Промышленный синтез хлорорганических продуктов особенно широкое развитие получил в последние 30 лет. Около 70% всего выпускаемого промышленностью хлора расходуется на производство хлорорганических веществ, объем производства которых в настоящее время исчисляется миллионами тонн в год. Ассортимент промышленных хлорсодержащих органических соединений настолько велик и разнообразен, что хлорперерабатывающая отрасль стала одной из ведущих в химической промышленности. [c.6]

    Успехи органического синтеза в области металлоорганических соединений магния, цинка, лития и натрия относятся пока в основном к практике лабораторной работы. Промышленное применение металлоорганических соединений разработано значительно меньше. Задача внедрения в промышленность тех химических продуктов, которые до сего дня были получены лишь в стенах лабораторий, является первоочередной. Это вытекает из того, что сложные органические соединения не всегда можно получить при помощи катализа или другими известными в промышленной технологии методами. Разработка про-]иышленного ыеталлоорганического синтеза является актуальной проблемой, требующей не только и не столько технологического, сколько научного решения. [c.219]

    Уксусная кислота потребляется в массовых количествах в промышленности органического синтеза, а также в пищевой, текстильной и др. отраслях. Основное количество уксусной кислоты (75%) используется для синтеза химических продуктов, таких, как винилацетат, терефталевая кислота, уксусный ангидрид, пропилбутило-вый эфир, этилацет. [c.293]

    В других странах работы в этой новой области первоначально сильно отставали, что частично объяснялось полным отсутствием нефти в этих странах, вследствие чего химическая переработка нефтепродуктов не привлекала большого внимания. Кроме того, имела значение и потребность 1В крупных затратах при осуществлении процессов производства алифатических химических продуктов. В Германии необходимость химической переработки парафиновых углеводородов возникла только после промышленного осуществления процессов гидрогенизации углей и синтеза углеводородов по Фишеру—Тропшу, являющихся источником исходного сырья. [c.7]

    Рассматриваемый с этой точки зрения синтез Фишера — Тропша является основой для ptaзвития химической промышленности алифатического ряда примерно так же, как уже в течение длительного времени основой для получения ароматических соединений является коксохимическая промышленность [5а]. Часть продуктов синтеза, кипящую выше бензина, нецелесообразно подвергать крекингу с получением бензина, так как эти продукты являются превосходным сырьем для последующей химической переработки. [c.71]

    Впервые дифенилолпропан был синтезирован русским ученым А. П. Дианиным конденсацией фенола с ацетоном в присутствии кислотного катализатора . В промышленности дифенилолпропан начала выпускать в 1923 г. германская фирма Kurt Albert он использовался для получения синтетических лаковых смол альберто-лей и дюрофеноБ . Однако значительный рост его производства относится только к 50-м годам, когда большое распространение в различных областях промышленности получили эпоксидные полимеры, сырьем для синтеза которых явились дифенилолпропан и эпихлоргидрин. С тех пор дифенилолпропан находит все более широкое применение в химической промышленности в качестве сырья, для производства ряда ценнейших химических продуктов 1 В ближайшие годы производство его должно значительно возрасти это видно из следующих данных (в тыс. т в год)  [c.5]

    На базе газов нефтепереработки, природных и иопутных газов в СССР строятся и работают крупные заводы по производству различных продуктов органического синтеза. Так, в большом масштабе производятся фенол и ацетон ио методу, разработанному нроф. П. Г. Сергеевым, создана промышленность синтетического спнрта, организовано производство стирола и полистирола, питрила акриловой кислоты, поливинилхлорида и других химических продуктов, являющ,ихся в свою очередь сырьем для промышленности синтетического каучука, пластических масс, искусственного волокна и других отраслей промышленности. Однако уровень развития нефтехимической промышленности СССР все еш,е отстает от потребностей народного хозяйства нашей страны. Углеводороды природных газов используются для химической переработки все еш,е в недостаточном объеме. [c.4]

    Третья ветк а—производство на базе олефиновых углеводородов. Важнейшими полупродуктами в промышленности нефтехимического синтеза являются низкомолекулярные олефиновые углеводороды—этилен, пропилен и бутилены. На базе переработки этих продуктов основаны современные производства высококачественных пластических масс, синтетических волокон, синтетического каучука, моющих веществ и целого ряда других химических продуктов, таких, как синтетические спирты, альдегиды, кетоны, гликоли, фенол, окись этилена, нитрил акряловой кислоты и др., являющиеся, в свою очередь, ценными промежуточными продуктами в производствах органического синтеза. Основным источником получения олефиновых углеводородов является процесс пиролиза нефтепродуктов. [c.314]


Смотреть страницы где упоминается термин Промышленный синтез химических продуктов: [c.432]    [c.456]    [c.160]    [c.476]    [c.352]   
Смотреть главы в:

Новейшие достижения нефтехимии и нефтепереработки Том 2 -> Промышленный синтез химических продуктов

Новейшие достижения нефтехимии и нефтепереработки -> Промышленный синтез химических продуктов

Новейшие достижения нефтехимии и нефтепереработки Том 3 -> Промышленный синтез химических продуктов




ПОИСК





Смотрите так же термины и статьи:

Промышленные продукты

Промышленный синтез



© 2025 chem21.info Реклама на сайте