Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Источники получения и применение ароматических углеводородов

    Обычно систему напуска располагают на некотором расстоянии от источника и отделяют от него натекателем . Образец должен находиться в системе напуска при давлении около 0,1 мм рт. ст., при котором он должен быть полностью испарен, и состав паров и исходного материала должен быть идентичным. Проблемы напуска образца будут рассмотрены ниже, но следует указать, что используемые в большинстве лабораторий методы не обеспечивают возможности анализа соединений, имеющих упругость пара менее 0,1 мм рт. ст. при 350°. Температура 350° — это температура, при которой большая часть органических кислород- и азотсодержащих соединений термически неустойчивы. Из этого следуют серьезные ограничения аналитических возможностей масс-спектро-метра Упругостью пара 0,1 мм рт. ст. обладают парафиновые углеводороды (наиболее летучие высокомолекулярные органические соединения, за исключением галогеносодержащих) с молекулярным весом около 600 или ароматические углеводороды с конденсированными кольцами с молекулярным весом около 400 присутствие в молекуле атома азота или кислорода в заметной степени снижает летучесть органических веществ. Тем не менее для тех соединений, для которых масс-спектр может быть получен, он является источником наиболее полной информации по сравнению со сведениями, получаемыми любыми другими методами. Обширная информация, получаемая на основании масс-спектров, обеспечивает дальнейшее расширение применения приборов для качественного анализа и более полное использование потенциальных возможностей метода. Ниже описывается последовательность операций, необходимых для идентификации. [c.300]


    Важным фактором эффективности бензиновой модели нефтехимии следует считать комплексную переработку жидких продуктов пиролиза. Проблемы эффективности различной глубины переработки пироконденсата и тяжелой смолы пиролиза рассмотрены в монографии [ 5]- Здесь уместно лишь указать, что определенный экономический эффект производства бензола из пироконденсата по сравнению с производством его в нефтепереработке (риформинг, экстракция, деалкилирование толуола) составляет 6,3 млн. рублей. Это требует особой тщательности при организации перспективной структуры сырья пиролиза в нашей стране. Чрезмерная доля легкого углеводородного сырья резко снижает значение наиболее дешевого источника бензола — пиролиза нефтяного бензина, влечет за собой общее удорожание производства не только этого мономера, но и бутадиена. Например, удельные капиталовложения на получение бутадиена из фракции С4 пиролиза в 10—12 раз ниже аналогичного показателя, характеризующего процессы дегидрирования бутана. Сырьевая база пиролиза в связи с комплексностью процесса производства низших олефинов из нефтяного бензина требует оптимизации, поскольку использование самой дорогой нефти в химическом направлении может оказаться эффективнее применения этана и сжиженных газов, так как в последнем случае для получения ароматических углеводородов и мономеров синтетического каучука требуются дополнительные процессы. [c.370]

    Источники получения и применение ароматических углеводородов [c.220]

    Отсутствие до недавнего времени удобных и дешевых методов получения нитросоединений жирного ряда было основным препятствием широкого внедрения этого класса соединений в практику. Причиной этих трудностей является большая инертность парафиновых углеводородов по сравнению с ароматическими углеводородами к действию азотной кислоты. В течение многих лет попытки ввести нитрогруппу в ациклические углеводороды прямым действием азотной кислоты не давали положительных результатов (это также относится к нитрованию боковой цепи ароматических углеводородов). Однако широкая доступность парафиновых углеводородов (особенно СССР богат естественными газами, которые и представляют источники низших парафиновых углеводородов) заставила многих химиков обратиться к изучению вопроса переработки предельных углеводородов в нитропарафины. Этот класс соединений может быть использован в различных областях химической промышленности. Кроме того, нитропарафины являются весьма реакционноспособными веществами, и на их основе можно синтезировать многие новые, весьма ценные химические продукты, из которых некоторые уже нашли себе применение. [c.11]


    После успешного внедрения в промышленность начавшего развиваться примерно с 1894 г. производства ацетилена из карбида кальция вни,мание к пиро-генетическому способу на время ослабло. Только значительно позднее интерес к этому методу снова возрос в связи с увеличивающимся предложением дешевого органического сырья, как например природный газ. с.месь газообразных парафинов и олефинов крекинга, сырая нефть и различные ее погоны, тяжелые смолы и асфальты. Транспортировка метана, являющегося главной составной частью природного газа, невыгодна для многих районов его добычи, а применение его как топлива и источника сажи ограничено. Поэтому и были начаты поиски способов превращения метана в другае углеводороды. Однако для быстрого разложения метана требуется настолько высокая температура, что образование при этом парафинов и олефинов в больших количествах становится невоз.можньш хогя даже ароматические углеводороды могут быть получены при 1200°, все-таки наиболее важным способом использования. метана обещает быть конверсия его в ацетилен. Вследствие этого высокотемпературный крекинг метана и привлек к себе больше внимания, че.м другие пирогенетические процессы, предложенные для получения ацетилена. В некоторых странах Европы, не богатых запасами природных газов, была изучена также возможность пиролиза газов коксовых печей, водяного газа и содержащих метан смесей, получаемых из окисей углерода и водорода, нередко являющихся дешевыми побочными продуктами. Некоторый интерес как потенциальный источник ацетилена представляет крекинг дешевых нефтяных остатков, асфальтов и смол. Газообразные парафины и олефины и низкокипящие погоны представляют ценность для других целей, поэтому на них как на сырье для получения ацетилена обращалось меньше внимания. [c.38]

    Основным источником получения ароматических углеводородов в нефтеперерабатывающей промышленности являются бензины каталитического риформинга. В связи с одновременным ростом потребности в высокооктановых бензинах и в ароматических углеводородах, извлекаемых из этих бензинов, наблюдается нехватка прямогонных бензиновых фракций. Прямогонные керосино-газой-левые фракции многих сернистых и высокосернистых нефтей содержат значительное количество моноциклических ароматических углеводородов (до 25% и выше), которые до сих пор не нашли квалифицированного применения. [c.160]

    Содержание н-парафинов в готовом продукте составляет 96—98%, ароматических углеводородов — не более 0,4%. Продукт может быть применен для сульфохлорирования, причем вследствие его более низкой стоимости по сравнению с сырьем, полученным из других источников (катализат процесса синтеза [c.321]

    Рассмотрим применение выведенных зависимостей для обоснования точности и надежности анализаторов, являющихся источниками информации для АСУ реакторным блоком процесса каталитического риформинга (КР). Процесс КР предназначен для вторичной переработки бензиновых фракций с целью получения высокооктановых компонентов, которые используются в производстве бензинов с высоким октановым числом и ароматических углеводородов. [c.235]

    Реакция изомеризации — диспропорционирования отличается рядом практически весьма важных особенностей, с которыми необходимо предварительно ознакомиться для рассмотрения возможности промышленного осуществления процесса. Весьма важно отметить, что в реакциях этого типа в качестве сырья вероятнее всего будут использованы псевдокумол и ж-ксилол. Действительно, при производстве п- и о-ксилола и этилбензола высокой чистоты в виде остатка ароматической риформинг-фракции Сз будет получаться фракция, содержащая около 75% ж-ксилола. Эта фракция может использоваться как сырье для получения других изомерных ксилолов реакцией изомеризации или для получения ароматических углеводородов диспропорционированием. Аналогично псевдокумол высокой чистоты можно получать из фракции С,, риформинг-бензина путем выделения головных и хвостовых компонентов. Изомеризацией этой фракции можно получать смесь трех изомерных триметилбензолов, из которой мезитилен можно выделить перегонкой. Можно также осуществить диспропорционирование псевдокумола для получения фракции Сю, из которой кристаллизацией можно выделить дурол. Выше уже указывалось, что при помощи известных в настоящее время методов мезитилен нельзя выделить из ароматической фракции Сд риформинг-бензина. Хотя, как указывалось в патентной литературе [70—72], дурол можно выделить из риформинг-бензинов С кристаллизацией, суммарные ресурсы дурола, которые удастся получить из этого источника, недостаточны для крупнопромышленного применения. Помимо увеличения потенциальных ресурсов дурола при помощи процесса диспропорционирования, получаемая таким процессом фракция Сц, будет содержать значительно больше дурола, чем фракция Сщ риформинг-бензина, что дает заметные преимущества на последующих ступенях очистки. [c.331]


    Большинство моноциклических ароматических углеводородов выделяют из нефти с помощью хорошо известных методов разделения — экстрагирования, фракционирования, кристаллизации в сырье содержится сравнительно много целевых соединений. Аналогичные методы было предложено использовать и для производства нафталина, но до сих нор этот путь еще не нашел широкого промышленного применения. Усовершенствование технологии, открывшее возможности быстрого роста производства моноциклических ароматических углеводородов из нефти, сыграло важную роль и в разработке процессов производства нефтехимического нафталина. Установки каталитического риформинга, на которых получают моноциклические ароматические углеводороды, являются также источником большого количества сравнительно дешевого водорода — побочного продукта, необходимого для получения нафталина гидродеалкилированием алкилнафталинов, содержащихся в нефтезаводских фракциях. При правильном выборе сырья и условий процесса на установках каталитического риформинга можно получать также более тяжелый продукт, из которого удается выделить фракцию с высоким содержанием бициклических ароматических углеводородов. На установках каталитического и термического крекинга также образуются фракции, в которых могут содержаться большие количества нафталиновых углеводородов. [c.199]

    Каталитический крекинг служит в США главным источником получения пропилена. Однако в производстве других нефтехимических полупродуктов процессы каталитического крекинга и гидрокрекинга находят ограниченное применение, исключая получение исходного сырья для пиролиза. Количество олефинов, извлекаемое из нефтезаводских газов, недостаточно для удовлетворения нужд химической промышленности, вследствие чего паровой пиролиз приобрел самостоятельное значение как метод получения олефиновых углеводородов. Полагают, что в настоящее время общий годовой объем мирового потребления этилена (без социалистических стран) составляет 22 млн. т, а пропилена — 11 млн. т , Пиролизом жидкого углеводородного сырья получают также значительные количества других полупродуктов, таких, как бутадиен, бутилены, изопрен и ароматические углеводороды. Современные установки пиролиза нафты имеют годовую мощность 250—500 тыс. т этилена и потребляют свыше 1 млн. т сырья в год. [c.50]

    Из жидких продуктов коксования, которые получаются в количестве 4—4,5% от веса угля, добывали такие химические продукты, как бензол, толуол, ксилол, фенол, нафталин, антрацен. Свыше 100 химических продуктов, содержащихся в смоле, нашли применение в промышленности. Образующийся также при коксовании угля коксовый газ в количестве 15—20% от веса угля, состоящий из водорода (50—62% весовых), метана (20—34%), азота (5—10%), непредельных углеводородов (2—2,5%), стал источником получения широкого ряда химических продуктов. Несмотря на то что количество химических продуктов, получаемых при коксовании углей, недостаточно для обеспечения современных потребностей промышленности, коксохимическое производство продолжает играть важную роль в обеспечении химической промышленности ароматическим сырьем. К началу 70-х годов удельный вес коксохимического бензола составлял почти /4 поставок бензола химической промышленности. В качестве ведущего поставщика нафталина коксохимическая промышленность еще длительное время сохранит свое преимущество. [c.64]

    Важнейшим сырьем для производства полимеров являются также ароматические углеводороды — бензол, толуол и ксилол, источниками получения которых также может явиться нефтепереработка и особенно сланцевое сырье. На базе бензола и ксилола получаются капролактам, полистирол, феноло-формальдегидные полимеры, которые находят широкое применение в производстве пластмасс. [c.11]

    Природные источники и способы получения. В народном хозяйстве бензол и другие ароматические углеводороды находят широкое и разностороннее применение, поэтому потребность в них очень большая. Главнейшими источниками получения ароматических углеводородов являются каменный уголь, нефть, природные газы, ацетилен и его гомологи, некоторые природные эфирные масла. [c.136]

    При получении кокса из угля почти ничто не теряется. Каменноугольная смола служит источником получения необычайно большого числа соединений, некоторые нз которых приведены в табл. 22-9 это в основном ароматические углеводороды, а также их азот- и кислородсодержащие производные. Каменноугольный газ (после отделения легкого масла) используется в качестве топлива, а аммиачная вода — как источник аммиака. Кокс находит применение и как топливо, и как источник углерода при получении стали из окислов железа. Стремление избежать зависимости производства аренов от потребностей сталелитейной промышленности в коксе явилось одной из причин, стимулировавших поиски новых источников получения аренов. [c.160]

    Если определить алкилирование как категорию реакций, в которой молекулы полученного продукта содержат на одну или более алкильных или парафиновых групп больше, чем молекулы исходного вещества, то в эту категорию следует включить большое число различных реакций. Фтористый водород, повидимому, способен катализировать большинство, если не все эти реакции. Алкилированию могут быть подвергнуты ароматические или алифатические соединения или их производные, а источниками алкильных групп могут служить олефины, галоидные алкилы, спирты, простые и сложные эфиры, меркаптаны, сульфиды, парафиновые углеводороды и т. д. Важной особенностью использования фтористого водорода как катализатора в реакциях алкилирования является то, что он катализирует реакции алкилирования с участием любых алкилирующих агентов и не отравляется ими. Использование фтористого водорода в реакциях с сернистыми соединениями является хорошим подтверждением сказанного. В работах автора [51, 53, 54] опубликованы примеры применения фтористого водорода как катализатора нри алкилировании бензола различными алкилирующими агентами. Каталитическую силу фтористого водорода и широкие возможности его использования в качестве катализатора лучше всего можно уяснить при подробном рассмотрении опубликованных работ. Для удобства рассмотрения их целесообразно разделить на реакции ароматических и алифатических соединений. [c.230]

    Чистота растворителя. Ни один из используемых сегодня растворителей не имеет 100% чистоты. Наиболее общей примесью во многих органических растворителях является вода. В дополнение к этому каждый растворитель в зависимости от источника его получения и химической стабильности может содержать различные типы других загрязнений. Например, алифатический углеводород гексан может содержать кроме воды различные количества изомеров Се (таких, как метилциклопен-тан или триметилпентан), ненасыщенные соединения (такге, как 1-ге ксен или 2- метил-2-пентен), С5- и Ст-алифатические углеводороды и олефины, ароматические углеводороды (такие, как бензол и толуол) и даже более тяжелые ароматические-углеводороды (такие, как нафталин) и т.д. [147]. Эти различные соединения, хотя они присутствуют в небольших количествах, могут значительно влиять на некоторые применения ЖХ. Наличие олефинов и ароматических углеводородов в гексане-З величивает как поглощение в УФ-области, так и показатель, преломления и поэтому влияет на характеристики детектора. Более высокие концентрации изомеров С5 и Се могут изменить-значение к для неполярных соединений, разделяемых на неподвижных фазах, таких, как оксид алюминия или силикагель. Аналогичным образом вода будет влиять на удерживание, не только дезактивируя неподвижную фазу, но и также изменяя природу двух распределительных фаз в ЖХ-системе. [c.93]

    Этот метод был применен для оценки содержания циклопентанов и цикло-тексанов в смеси насыщенных углеводородов, выделенной из морских осадков см. статью 13 в настоящем сборнике). Поскольку было неясно, пригодны ли калибровочные коэффициенты, полученные из масс-спектров низкомолекулярных углеводородов, для анализа высокомолекулярных, а также неясно, не окажут ли влияние другие условия получения масс-спектров, был снят масс--спектр продуктов гидрирования фракции моноциклических ароматических углеводородов с достаточно большой молекулярной массой. Образец вводился в ионный источник через систему прямого ввода. Эта фракция не должна была одержать циклопентановые углеводороды. Для расчета использовались калибровочные коэффициенты из табл. 18, соответствующие 256, 283 и 282 (взяты только эти аналитические характеристики, так как другие испытывают от-лосительно большие наложения со стороны полициклических соединений). [c.99]

    Из реакций хлорирования моноциклических ароматичеоких углеводородов наибольшее применение в технике нашло получение монохлорбензола из бензола, а также хлор истых бензила и бенэилидена из толуола. При пиролизе нефти также были получены ароматические углеводороды (гл. 5), тогда как прежде единственным экономически выгодным источником ароматических углеводородов являлся каменноугольный деготь, получаемый при коксовании битуминоз1ных углей при высокой температуре. В продолжение мировой войны была весьма полно исследована возможность использования некоторых фракций нефтей в качестве источника получения толуола из некоторых ефтей были экстрагированы значительные количества этого углеводорода для превращения его в TNT (тринитротолуол). Извлечение из нефти индивидуальных ароматических углеводородов в чистом состоянии представляет трудности даже тогда, когда нефтяные фракции очень богаты ароматической составной частью. Большая часть работ по хлорированию аро-матических углеводородов была проведена на индивидуальных веществах о возможностях использования богатых ароматикой фракций нефти в качестве источника хлорированных ароматических веществ известно очень мало. Принимая во внимание большую реакционноспособность ароматических углеводородов в отсутствии света и в присутствии некоторых переносчиков галоида, кажется возможным осуществить избирательное хлорирование ароматической составной части смеси этих углеводородов и насыщенных углеводородов парафинового типа. Было бы интересно установить, насколько возмо жно провести хлорирование бензола и толуола в смеси их с парафиновыми углеводородами, не подвергая хлорированию эти последние. [c.819]

    Концентрать тиофенов из нефтяных дистиллятов трудно получить. O HOBHbiM источником их получения могут служить дистилляты нефтей тиофенового типа. В этих концентратах большое содержание ароматических углеводородов. Поэтому трудности получения тиофенов из дистиллятов сдерживают поиски путей их применения в народном хозяйстве. Возможные области применение тиофена и его гомологов кратко приведены в монографии [14]. В ней указывается, что тиофен и его гомологи могут использоваться для синтеза высших углеводородов заданного строения, спиртов, кислот, эфиров и других соединений, а также для получения лекарственных веществ, присадок к топливам и маслам, для производства полимеров, обладающих диэлектрическими свойствами и флуоресцирующих материалов. [c.106]

    В ряде работ [1—3] было показано, что ароматические сульфокислоты являют- ся активными катализаторами реакции коиденсации ароматических углеводородов с формальдегидом. Однако применение сульфокислот как катализаторов в процессе получения дипсевдокумилметана затрудняет отсутствие простых способов их регенерации, необходимость в которой возникает вследствие разбавления сульфокислот выделяющейся в ходе реакции водой [4]. Кроме того, необходимость использования безводного источника формальдегида — параформа —резко ухудшает экономику процесса. [c.45]

    В продолжающемся справочном издании содержатся сведения о галогенпроизводных ароматических углеводородов (материал дополняет вышедший в 1990 г. справочник "Углеводороды. Галогенпроизвод-ные углеводородов") и о кислородсодержащих органических соединениях (кроме карбоновых кислот и их производных), загрязняющих окружающую и производственную среду. Приведены данные об их свойствах, получении и применении, источниках их поступления в окружающую среду, содержании в почве, воздухе, воде, продуктах питания и т.д. Даны предельно допустимые уровни в разных средах, санитарно-гигиеническая и токсикологическая характеристики, меры профилактики и защиты. [c.37]

    Водородные бактерии способны атаковать очень широкий спектр соединений — органические кислоты, сахара, углеводороды, ароматические соединения, поэтому они служат потенциальным источником разнообразных гидрогеназ, карбокси-лаз, ферментов азотного обмена, нуклеаз и т. д. Все эти ферменты представляют интерес для промышленности и медицины. Растворимая НАД-зависимая гидрогеназа может найти применение в топливных элементах. Известны способы получения ферментов уриказы и креатининаминодегидралазы из водородных бактерий. В последнее время поли-р-оксимасляная кислота стала применяться в качестве нетоксичного наполнителя биодеградируемых пластмасс. [c.136]


Смотреть страницы где упоминается термин Источники получения и применение ароматических углеводородов: [c.116]    [c.194]    [c.30]    [c.201]    [c.165]   
Смотреть главы в:

Основы органической химии 2 Издание 2 -> Источники получения и применение ароматических углеводородов

Основы органической химии Ч 2 -> Источники получения и применение ароматических углеводородов




ПОИСК





Смотрите так же термины и статьи:

Ароматические углеводороды применение

Источники ароматических углеводородов

Углеводороды применение

Углеводороды, получение ароматические Ароматические



© 2025 chem21.info Реклама на сайте