Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Объект исследований химической науки

    Объектами исследования в науке о полимерах являются, во-первых,, совокупность атомов и химических связей, образующих макромолекулу, [c.258]

    Из краткой характеристики специфических свойств высокомолекулярных соединений нефти видно, что эта группа веществ по химическому составу и строению, а также по размерам и неоднородности молекул резко отличается от низкомолекулярных соединений нефти, состоящих преимущественно из углеводородов. Для исследования высокомолекулярных соединений нефти неприменима большая часть классических методов, успешно используемых при изучении углеводородного состава бензино-керосиновых частей нефти. При разделении и исследовании наиболее тяжелой части нефти во много раз возрастает значение физических и физико-химических методов, которые позволяют изучать природу и свойства ее, не вызывая существенных химических изменений в объектах исследования. Именно физические и физико-химические методы разделения и исследования сыграли решающую роль в развитии химии высокомолекулярных органических соединений, определив возможность быстрого ее расцвета и выделения в самостоятельную область химической науки. Такую же роль призваны сыграть современные [c.15]


    По этим причинам идеи Бертолле отступили временно на второй план. Это принесло науке пользу, ибо позволило сосредоточить внимание ученых нй тех объектах, исследование которых вело к открытию закона кратных отношений, к разгадке причин постоянства состава химических соединений. Ответ на этот вопрос дала атомная теория, которая имела свою длинную историю. Но только после создания кислородной теории и учения о химических элементах, после открытия стехиометрических законов развитие химии логически и исторически потребовало развития атомистических представлений о строении вещества. [c.112]

    Объект исследований химической науки [c.8]

    Для систематического изучения состава и строения органического вещества твердых топлив вначале использовались главным образом методы органической химии, отчасти коллоидной химии, с привлечением данных, полученных геологией и микробиологией. Химия и физика высокомолекулярных соединений и угольная петрография в этот период только начинали оформляться в качестве самостоятельных разделов науки. Еще недостаточно были развиты физико-химические и чисто физические методы исследования. В этот период объектом исследования преимущественно являлись торфы, бурые угли, горючие сланцы, сапропелиты, растения-угле-образователи и продукты полукоксования этого твердого топлива. Каменные угли из-за большого разнообразия и очень сложной структуры были изучены слабее. [c.5]

    АНАЛИТИЧЕСКАЯ ХИМИЯ — один из основных разделов химической науки. изучающий методы определения состава веществ. Различают качественный и количественный анализы, а также, в зависимости от объекта исследования, неорганический и органический анализы. Различают также элементарный, функциональный, весовой, объемный, или титриметрический, спектральный, хроматографический, полярографический и другие анализы. [c.25]

    В соответствии с этой концепцией в марксистской литературе, посвященной анализу научного знания, до сих пор указывалось на два ряда факторов, определяющих развитие науки. К первому из них относятся социально-исторические факторы и в первую очередь требования производства материальных благ, а ко второму — различные формы движения материи, которые, представляя объект исследования, обусловливают структуру науки. Приведенные выше выводы о том, что развитие химии происходит строго закономерно— путем последовательного появления все более высоких уровней химического знания и образования иерархии, или гомологии, четырех концептуальных систем, полностью отвечают марксистской концепции развития науки. Указывая на определяющую роль социально-исторических и объектных факторов в смене способов решения основной проблемы химии, эти выводы позволяют создать стройное здание химии как единой целостности и становятся, таким образом, основанием теории развития химии. [c.29]


    На уровне первых двух концептуальных систем химии не было особой необходимости прибегать к пересмотру методов осуществления химического эксперимента. Со времени Ньютона и до начала XX в. естествоиспытатели вообще считали единственно правильной методологию однофакторного эксперимента. Это объяснялось тем, что точные науки стремились иметь дело с хорошо организованными системами , т. е. такими, в которых можно было видеть явления или процессы одной физической природы, зависящие от небольшого числа переменных. Ио химико-технологическая система оказалась ярко выраженной, плохо организованной системой , т. е. такой, в которой нельзя выделить отдельные явления и необходимо учитывать действие многих разнородных факторов. Поэтому классический метод постановки опыта не мог обеспечить ее необходимого изучения. Стала очевидной необходимость по-новому планировать эксперименты. В результате в последней четверти века эксперимент сам стал объектом исследования. Оказалось, что при изучении плохо организованных систем предпочтительна такая по- [c.158]

    Второй вывод, вытекающий из материала предыдущих глав настоящей книги и указывающий пути интенсификации развития химии, связан также с одним из важнейших диалектических принципов, относящихся к ленинскому учению об истине как процессе. Исходя из того, что познание есть вечное, бесконечное приближение мышления к объекту , В. И. Ленин показал, что истина складывается из представлений о совокупности всех сторон... действительности , из взаимозависимости понятий всех без исключения . Идеал химика как раз и состоит в том, чтобы достичь всестороннего учета факторов, обусловливающих максимальную эффективность управляемого пм химического процесса. Путь к этому идеалу, как о нем говорится в гл. IV, не может иметь экстенсивного характера он должен быть непременно интенсивным, революционным. Он связан с разработкой принципиально новых многопараметрических методов оптимизации химических процессов, с заменой аддитивного анализа процессов системным анализом, с переходом к новой идеологии химических исследований . Все это требует радикальной перестройки системы химических наук  [c.224]

    Различные науки исследуют конкретные формы движения материи. Например, объектом исследования неорганической и органической химии являются химические процессы, связанные с перегруппировкой атомов в молекулах реагирующих веществ, т. е. химическая форма движения материи. Современная физика изучает физическую форму движения (тепловые, электромагнитные, атомные, ядерные, гравитационные и другие (процессы).  [c.5]

    Одной из самых интригующих и перспективных задач современной науки является изучение механизма и движущих сил процессов, происходящих в живом организме. Решение этих проблем позволит перейти на качественно новый уровень развития фундаментальных и прикладных наук, таких как медицина, биотехнология и фармакология. В области химических наук толчком к началу исследования процессов молекулярного узнавания в биосистемах послужило открытие в конце бО-х годов искусственных молекул (краун-эфиров), способных к специфическому распознаванию других химических частиц. В последующие годы бурное развитие получил синтез соединений, способных к самоорганизации. На рубеже 80-90-х годов сформировалась новая область знаний, получившая название "супрамолекулярная химия". У ее истоков стоят работы трех нобелевских лауреатов 1987 года -Ч. Педерсена, Д. Крама и Ж.-М. Лена [1-3]. По определению Лена [4], супрамолекулярная химия - это химия межмолекулярных связей, изучающая ассоциацию двух и более химических частиц, а также структуру подобных ассоциатов. Она лежит за пределами классической химии, исследующей структуру, свойства и превращения отдельных молекул. Если последняя имеет дело главным образом с реакциями, в которых происходит разрыв и образование валентных связей, то объектами изучения супрамолекулярной химии служат нековалентные взаимодействия водородная связь, электростатические взаимодействия, гидрофобные силы, структуры "без связи". Как известно, энергия невалентных взаимодействий на 1-2 порядка ниже энергии валентных связей, однако, если их много, они приводят к образованию прочных, но вместе с тем гибко изменяющих свою структуру ассоциатов. Именно сочетание прочности и способности к быстрым и обратимым изменениям - характерное свойство всех биологических молекулярных структур нуклеиновых кислот, белков, ферментов. [c.184]

    Пожалуй, главная, наиболее фундаментальная задача не только органической химии, но и всей химической науки — это установление зависимости свойств вещества (физических, химических, биологических) как функции главного в химии аргумента — молекулярной структуры. Подобные функциональные зависимости в принципе невозможно установить на примере одного соединения. Чтобы изучить или хотя бы обнаружить функциональную зависимость, надо проварьировать аргумент, т.е. изучить серию соединений различной структуры. Изменения структуры органического соединения могут происходить только дискретно, скачками, и какими бы минимальными они ни были, они в той или иной мере сказываются на всем комплексе свойств вещества. Поэтому любое органическое соединение представляет собой неповторимую химическую индивидуальность с единственной конкретной структурой и единственным набором свойств. Именно поэтому закономерности типа структура — свойство могут быть выражены в количественном виде лишь для ограниченного круга задач и объектов (как, например, это удается сделать в гамметовских корреляциях свободной энергии или в рассмотренном выше случае оценки зависимости цветности азокрасителей от природы хромофоров). В большинстве же случаев эти закономерности носят чисто качественный характер, и в поиске вещества с заданными свойствами неизбежен эмпирический подход, который предполагает синтез и всестороннее исследование серий родственных соединений с планомерно варьируемыми свойствами.  [c.53]


    При решении многочисленных научных, технических, технологических и экологических проблем аналитическая химия играет все возрастающую роль. Достаточно напомнить об уникальных достижениях советской космической науки в исследовании химического состава атмосферы и поверхностных пород Венеры с помощью анализаторов, установленных на борту спускаемых аппаратов станций Венера-13 и Венера-14. Решающее значение в контроле за состоянием окружающей среды и уровнем загрязнений природных и промыщленных объектов принадлежит аналитической химии. [c.5]

    Современное развитие химических и биологических наук истребовало более глубокого проникновения в существо изучаемых процессов, детального анализа химического состава разнообразных смесей и биологических объектов. Кроме того, для химического и биотехнологического ироизводства, в том числе для промышленности лекарственных средств, характерны постоянное возрастание требований к чистоте выпускаемых продуктов, ужесточение методов контроля, тенденция к использованию количественных критериев ири оценке качества. Поэтому помимо оценки интегральных характеристик, присущих объекту исследования в целом, часто требуется детальное изучение содержания отдельных компонентов, определяющих состояние биологических систем либо качество химических продуктов. Рещение этих задач, как правило, невозможно без применения достаточно эффективных методов разделения сложных смесей. Среди таких методов доминирует хроматография. Бурно развиваясь в последние десятилетия, этот метод открыл возможности разделения смесей, содержащих десятки и сотни компонентов, их качественного и количественного анализа, препаративного выделения индивидуальных веществ. Принципы хроматографии весьма универсальны, благодаря чему она оказалась пригодной для изучения объектов самой различной природы — от нефти и газов атмосферы до белков, нуклеиновых кислот и даже вирусов. Этим объясняется огромный интерес представителей различных научных и технических дисциплин к хроматографическим методам. Только в пяти специализированных международных журналах по хроматографии ежегодно выходит в свет свыше 2000 публикаций ио различным вопросам теории и применения метода, общее же их число в несколько раз больше. [c.5]

    Аналитическая химия — наука о методах определения химического состава вещества. Различают качественный анализ и количественный анализ. В зависимости от объекта исследования А. х. принято разделять на неорганический анализ и органический анализ. [c.17]

    Биохимия (биологическая химия) — наука о химическом составе живых организмов и химических превращениях веществ при их жизнедеятельности. По объектам исследования Б. разделяют на Б. животных и человека, Б. растений и Б. микроорганизмов. В настоящее время установлена общность главнейших процессов обмена веществ в животных, растениях и микроорганизмах. [c.26]

    Новая структурная классификация химических наук возникла в тесной связи с процессом формирования отдельных специфических направлений исследований и последующей дифференциации химии на отдельные химические науки, для каждой из которых более строго определялись объекты и специальные методы исследований. Новая классификация химических наук отразила логическое развитие химических знаний в XIX столетии и вполне соответствовала задачам дальнейшей, более специализированной, разработки отдельных направлений исследований. Заметим попутно, что употребляемое и в настоящее время название общая химия сохранено, в основном, для обозначения учебной дисциплины — основного курса химии в планах химического образования. Новая структурная классификация химии, как известно, представляет основу структуры и классификации химических наук, принятую в наше время. В конце 80-х годов прошлого столетия многим казалось, что химия в какой-то степени завершила свое развитие. Действительно, к этому времени сложились, казалось, строго научные определения основных понятий химии — элемент, атом, молекула, эквивалент, простое тело, валентность и др. Научную базу химии составляли фундаментальные законы и основополагающие теории, открытые и установленные в течение XIX столетия и увенчанные теорией химического строения и периодическим законом. Химия располагала к этому времени комплексом закономерностей, открытых в результате изучения различных сторон химического процесса и различных химических явлений. Органическая химия, занявшая к тому времени первенствующее положение в исследованиях, прочно вступила в новый этап своего развития — эпоху направленного органического синтеза. Многие химики полагали поэтому, что основные проблемы химии уже получили свое решение и что постройка научного здания химии в основном уже завершена, за исключением некоторых деталей. [c.12]

    Дано определение химической технологии как науки и объекта ее исследования — химического производства. Рассмотрены закономерности реакционных процессов химической технологии, основы теории, расчета и выбора химического реактора. Приведены методы анализа и синтеза химического производства как химико-технологической системы. Описано производство важнейших промышленных продуктов химической технологии и биотехнологии. Особо выделены химико-технологические процессы зашиты окружающей среды. [c.2]

    Дифференциация химической науки продолжается и сейчас из неорганической химии вьщелилась координационная химия, а из биохимии — био-координационная (бионеорганическая) и биоорганическая химия. У каждой из этих наук имеются самостоятельные объекты и методы исследования, свои специфические законы и закономерности. [c.8]

    Без знания номенклатуры органических соединений не может обойтись ни один химик, причем не только химик-органик, но и химики других специальностей, поскольку органические соединения давно стали объектами исследования различных отраслей химии, биологии и др. наук. Химическая номенклатура — это язык, необходимый для общения исследователей органических соединений друг с другом. Хотя в настоящее время существует достаточно много компьютерных программ, позволяющих называть органические соединения и по названию соединения восстанавливать его структурную формулу, понятно что, читая литерат)фу невозможно за каждым словом лезть в словарь . Кроме того, относительно доступные программы непригодны при работе с достаточно сложными соединениями, а главное они оперируют только с названиями на английском языке. [c.11]

    Биохимия является одновременно и биологической, и химической дисциплиной. Биологической она является в первую очередь по природе изучаемых ею объектов, которые представлены веществами животного, растительного и микробного происхождения. Биологической она является и по тем конечным целям, во имя которых проводятся биохимические исследования — познание свойств и выяснение механизмов функционирования веществ, из которых построена живая материя. В то же время, будучи наукой о веществах и о протекающих с их участием химических превращениях, биохимия по своей методологии является химической дисциплиной. Она использует разнообразные методы, которые предоставляют в её распоряжение фундаментальные химические науки — неорганическая, органическая, аналитическая и физическая химия, а также химия высокомолекулярных соединений. В то же время природа исследуемых объектов, особенности решаемых задач накладывают свою специфику на использование этих методов, на их относительную значимость. Наиболее выпукло эти особенности проявляются при исследовании нерегулярно построенных биологических полимеров — белков и нуклеиновых кислот, которые являются более высокой формой организации материи, чем низкомолекулярные соединения и регулярно построенные гомополимеры, также широко представленные в живой природе, в первую очередь различными полисахаридами. [c.230]

    Больщинство инструментальных методов исследования, используемых в атомной и молекулярной физике, аналитической химии и других смежных областях наук, позволяют получить информацию о составе и строении угольного вещества. Сложность угля как объекта исследования обусловлена его гетерогенностью на всех уровнях изучения строения вещества атомно-молекулярном (размеры порядка 0,1 —100 нм), микроскопическом (10—10 нм) и макроскопическом (10" нм). Причиной гетерогенности является отсутствие упорядоченности строения органической массы угля, состоящей из углеводородных и гетероатомных фрагментов, наличие в угольном веществе пор различных размеров, полых либо заполненных водой или органическим веществом, наконец, присутствие различных минеральных включений. В связи с этим для получения корректных представлений о структуре и свойствах исходного угольного вещества, о процессах с его участием, о составе твердых, жидких и газообразных продуктов, образующихся в результате этих процессов, необходимо использовать совокупность различных физических, химических и физико-химических методов. [c.64]

    Вряд ли можно назвать другой раздел физических или химических наук, который имел бы столь обширную и столь детально разработанную теорию, как атомная и молекулярная спектроскопия. С другой стороны, современная спектроскопия располагает весьма разнообразными методами исследования, каждый из которых быстро развивается и имеет особую специфику в отношении аппаратуры, области приложения, объектов исследования, обработки и интерпретации экспериментальных данных, возможностей решения теоретических и практических проблем. [c.5]

    Среди широкого круга химических дисциплин, часть из которых выделилась из русла единой науки химии уже сравнительно давно (не позднее конца XIX века), а другая часть возникает буквально. на наших глазах, аналитическая химия занимает особое и несомненно важное место. Если неорганическая и органическая химия, биохимия и геохимия, гидрохимия и космохимия, как отдельные химические дисциплины, достаточно четко определены предметом, т. е. кругом объектов, подлежащих исследованию, то сами методы исследования, хотя и отражают в известной маре специфику объектов, все же остаются достаточно общими. С другой стороны, для ряда химических дисциплин решающим фактором их обособления служит как раз специфика используемых методов исследования химических превращений вещества. К числу таких дисциплин можно отнести, например, электрохимию, квантовую химию, кристаллохимию и рентгеноструктурный анализ.. [c.7]

    Возникновение органической химии как одной из основных химических наук со своими специфическими объектами, методами и приемами исследования относится к первой четверти XIX в. Конечно, и ранее были хорошо известны многие органические вещества, такие, как уксусная и некоторые растительные кислоты, спирт, сахар, эфиры, красители и фармацевтические препараты и т. д., применявшиеся в производствах и в быту. К началу XIX в. число известных органических веществ значительно возросло. Однако, как мы увидим, возникновение органической химии не было связано лишь с расширением круга веществ, относимых к классу органических. [c.151]

    Метод ЯМР, открытый и разработанный физиками, очень быстро нашел применение в химии, и на протяжении десятилетий многие аспекты его развития и совершенствования экспериментальной базы связывались, в основном, с проблемами исследования структуры и свойств различных химических веществ. Разработка новых методик проведения экспериментов и обработки данных постоянно расширяла круг решаемых с применением ЯМР задач и позволяла исследовать все более сложные объекты. Это способствовало успешному применению ЯМР для исследования структуры биомолекул и их функций в организме на уровне клеток и органов. Такая ситуация, когда организм человека становится объектом исследования различных наук, в настоящее время не является редкой. Это оказывается возможным благодаря тому, что вполне сложившиеся научные дисциплины преодолевают свою обособленность, и на их пересечении возникают новые интересные задачи. Книга К.Х.Хауссера и Х.Р.Кальбитцера является результатомименнотакого процесса взаимодействия различных областей науки, а также примером того, как метод, основанный на фундаментальном физическом явлении -ЯМР, выходит за пределы чисто научных задач и выступает как метод клинической диагностики, успешно конкурируя с рентгеновской компьютерной томографией. [c.3]

    Конечно, для химии действительно важнейшей ее областью является изучение превращений веществ, но в словах А. Кекуле проявляется столь явное пренебрежение к наличной yб taнции , что химия в его глазах как бы превращается в науку о несуществующем — о прошлом и будущем, в то время как важнейший объект исследования — реально существующие вещества с их химическими и физическими свойствами — допускается в химию лишь нехотя, на второстепенных правах. Не понимая глубоко теории строения, А. Кекуле делал и грубые фактические ошибки при ее применении. Так, в 1865—1866 гг. он настаивал на существовании трех изомерных пропиловых спиртов (из приводимых формул видно, что разными он считал формулы, лишь по-разиому написанш,1е). [c.25]

    Поскольку в молекуле в конечном счете нет ничего, кроме атомных ядер и электронов, а их поведение исчерпывающе описывается с помощью уравнений Шрёдннгера, то для точного описания любых химических явлений необходимо и достаточно составить и решить соответствутощие уравнения, учитывающие взаимодействие всех элементов системы. Таким образом, от химии, как самостоятельной науки, ничего не остается — она лишается своего спещ1фического объекта исследования, и ее существование в современном мире оправдывается лишь как временная мера, пока не развит достаточно мощный математический аппарат квантовой химии и адекватные возможности компьютеров. Насколько справедливо такое рассуждение  [c.546]

    Изучение форм движения материи является непременным условием познания сущности материи. То же самое можно сказать о реакциях и веществах как объектах химической науки знание движения частиц в веществе дает представление о самом веществе. Изучение химического процесса позволяет получить сведения об участвзтохцих в нем веществах. И наоборот, исследование свойств вещества дает знания о характере движения составляюищх его частиц, т.е. о проходящих в нем процессах и реакциях с другими веществами. [c.5]

    За основу любой естественной науки принимается классификация объектов исследования. В основе классификации в неорганической химии лежат химические элементы — металлы и неметаллы, т. е. периодическая система элементов, а также классы и группы образуемых ими химических соединений — кислот и оснований, оксидов и гидрадов, простых и комплексных солей, интерэлементных соединений. [c.18]

    Отражением этого противоречия и прямым следствием действия законов диалектики явилось встречное даижение наук по пути к взаимному обогащению, взаимодействию и интеграции. Появились математическая лингвистика, химическая физика, биологическая химия... Что будет конкретным и конечным итогом этого непрерывного искания, постоянной смены целей и объектов исследования, предсказать пока трудно, но одно является очевидным — в конечном итоге человек достигнет прогресса и в тех областях знания, которые совсем недавно казались окутанными покровом глубокой тайны... [c.8]

    V , фундаментом в науке о материалах, несомненно, являются физика и химия твердого тела. Следует обратить внимание на необходимость установления более четкой границы между этими дисциплинами, а также на нецелесообразность и недопустимость сведения химии твердого тела к физике твердого тела. Разумеет- ся, что объектом исследования в обоих случаях является твердое тело, которое в отличие от газов и жидкостей характеризуется сильным кооперативным взаимодействием частиц. Физика твердого тела концентрирует свое внимание на изучении природы этого взаимодействия и физических свойств, обусловленных как упорядочением, присущим твердому состоянию, так и возможными макро- и микронарушениями данного порядка. Что же касается химии твердого тела, то она изучает свойства и превращения твердых веществ. Специфика химического поведения простых веществ и соединений более всего проявляется, когда они находятся в состоянии молекулярного или атомного пара. Переход к жидкому, а тем более к твердому состоянию усиливает вклад чисто физических факторов, и перед исследователями открываются две возможности 1) сосредоточить внимание на особенностях поведения физико-химической системы, возникающих благодаря усилению чисто физических взаимодействий 2) сконцентрировать силы на изучении химической специфики аростых веществ и соединений, проявляемой на фоне сильного кооперативного взаимодействия частиц, характерного для твердофазного состояния. [c.133]

    В первой половине 20-х годов, когда В. А. Каргин начал свои исследования в области коллоидной химии, основные представления и круг вопросов, разрабатываемых этой наукой, значительно отличались от современных. Еще не так давно, в первом десятилетии текущего столетия, утвердилось представление о том, что коллоидность связана не с составом вещества, как предполагал Грэм [2], а зависит от его состояния. В то же время было показано, что коллоидные частицы могут иметь кристаллическое строение [3]. Тем не менее до 40-х годов продолжались настойчивые попытки 1)ассматривать многие коллоидные частицы как гигантские многовалентные ионы и составлять химические формулы таких но- тгаионов. Это приближало коллоидные системы к истинным растворам и приводило к пренебрежению основными свойствами дисперсных систем — их микрогетерогенностью и связанными с ней поверхностными явлениями. Объектами исследования служили главным образом разбавленные коллоидные растворы (золи). Концентрированным и грубодисперсным системам уделялось мало внимания. [c.82]

    Важнейшее значение в развитии современной химической науки имеет усовершенствование старых и создание ювых прогрессивных физико-химических методов исследования, точнейшей аппаратуры и приборов, позволяющих быстро фиксировать самые незначительные колебания параметров и изменения свойств исследуемых объектов в сложных условиях химических процессов. В последние годы з хилиш уделяется большое внимание развитию методов расчета свойств молекул и их систем с применением сложного математического аппарата квантовой механики и использовакием новейшей электронно-вычислительной техники. [c.13]

    Поскольку детальное рассмотрение механизма химических реакций невозможно без знания электронного строения реагентов и возникающих в процессе реакции промежуточных комплексов, в настоящей главе мы остановимся на основных методах расчета электронной структуры молекул. Физическая основа этих методов была сформулирована квантовой механикой, а применение методов квантовой механики к молекулярным системам выделилось в отдельную область — квантовую химию. Граница между квантовой механикой и квантовой химией в достаточной мере условна, как условно и само разделение объектов их изучения. Так, к молекулярным системам в настоящее время принято относить не только сами молекулы и их комплексы, но и дефекты в кристаллах, комплексы молекул с поверхностью твердых тел, различные агрегаты, образующиеся в растворах, в том числе и такие, казалось бы, чисто физические объекты, как сольватироваиный электрон. Именно специфика объектов исследования и определяет квантовую химию как отдельную область науки. Следует отметить, что никаких новых физических идей, кроме постулатов квантовой механики, квантовая химия не содержит, однако особенности химических объектов потребовали от нее создания собственного оригинального математического аппарата, поскольку рещенне волнового фавнения Шредингера, являющегося основой квантовой механики, для подавляющего большинства химических объектов без введения ряда приближений и упрощающих предположений невозможно. Эти приближения, а также соответствующие результирующие уравнения для волновой функции, определяющей электронное распределение в молекулярных системах, и составляют математический аппарат квантовой химии, на котором, в свою очередь, [c.37]

    По объектам исследования биохимию разделяют обычно на биохимию растений, животных и микроорганизмов. Биохимия может быть разделена также на статическую биохимию, занимающуюся исследованием химического состава микроорганизмов, растений и животных, и динамическую биохимию, изучающую процессы обмена веществ в организмах. Такое деление отражает исторические этапы в развитии биохимии как науки прежде чем исследовать химические нроцеосы, лежащие в основе обмена веществ, необходимо изучить химические вещества, которые входят в состав живых организмов и подвергаются лревращениям в процессах обмена веществ. [c.5]

    Это естественно, ибо самим предметом химической науки является исследование именно тех явлений, при которых происходит изменение качества веществ, т. е. процессов их превращений. В отличие от механики, астрономии и геометрии, возникших в результате потребностей исследовать количественные стороны объектов и процессов, химия с момента своего зарождения на протяжении веков занималась наблюдением качественных изменений. Лишь сравнительно недавно, с середины ХУП1 в., с введением весов начинается в химии эпоха количественных измерений. [c.176]


Смотреть страницы где упоминается термин Объект исследований химической науки: [c.293]    [c.17]    [c.176]    [c.53]    [c.499]    [c.133]    [c.133]    [c.109]   
Смотреть главы в:

Неорганическая химия -> Объект исследований химической науки




ПОИСК







© 2025 chem21.info Реклама на сайте