Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Релаксация конформационная

    Релаксационный характер механических свойств и физических состояний полимеров. Специфика полимеров заключается не только в проявляющейся при определенных условиях способности к большим обратимым деформациям, но также в том, что их механические свойства носят резко выраженный релаксационный характер, т. е. сильно зависят от временной, а в случае периодических деформаций, от частотной шкалы. Эта. зависимость, как и высокоэластичность, является следствием длинноцепочечного строения полимеров и обусловлена необходимостью длительных промежутков времени (времен релаксации) для конформационной перестройки большого числа связанных ме.жду собой структурных элементов цепи при переходе ее из одного равновесного состояния в другое. Время релаксации является функцией температуры и за- [c.40]


    Полученные конформационные изменения при термообработке ненапряженного образца объяснялись [25—27] ростом относительной длины (первоначально) вытянутых проходных цепных сегментов вследствие миграции дефектов из кристаллических блоков. Число правильных укладок цепей при этом также возрастает. По-видимому, сокращение нити должно зависеть от числа складок. Структурные изменения в процессе термообработки механически стабильны, и их не просто обратить с помощью напряжения растяжения. На рис. 7.18 дано модельное представление конформационных изменений при термообработке [4, 5]. Из-за миграции дефектов при термообработке растянутого образца происходит релаксация локаль- [c.211]

    В двух приведенных уравнениях предполагается, что спектры времен релаксации и ретардации дискретны. Физически концепция дискретной спектральной реакции на внешние воздействия достаточно разумна. Она означает, что система деформированных гибких полимерных цепей возвращается в конформационное состояние, в котором она имеет максимальную энтропию по большому набору (Л ) типов молекулярных движений, часть из которых происходит быстро (малые А.), а часть — медленно. Наибольшее время релаксации, по-видимому, представляет собой характерное время перестройки цепи в целом или системы цепей. Но в механике сплошных сред дискретные молекулярные системы аппроксимируются непрерывными моделями, поэтому, исходя из предыдущих соображений,, дискретные спектры можно преобразовать в непрерывные следующим образом  [c.148]

    П1. Сложнее третий вариант структурного стеклования, который связан с непрерывным изменением конформаций цепей при растяжении, или ориентации (см. гл. V и VI). Растянутые цепи, если сохраняется растягивающая сила (за счет внешнего поля или внутреннего — при кристаллизации), обладают пониженным кон-формационным набором , т. е. пониженной конформационной энтропией, а активационные барьеры торможения внутреннего вращения возрастают. Естественно, эти цепи становятся и термодинамически, и кинетически как бы более жесткими, что равносильно смещению релаксационного спектра в целом в сторону более высоких температур и больших времен релаксации [19, с. 124]. [c.82]

    Механизм влияния кристаллизации на температуру размораживания сегментальной подвижности в аморфных областях полимера рассмотрен Манделькерном [45]. В процессе образования кристаллитов в образующейся кристаллической фазе заметно возрастает плотность полимера, что приводит к деформации аморфных областей, уменьшению возможного конформационного набора для находящихся в них макромолекул и к увеличению времени релаксации процесса их сегментальной подвижности. В связи с этим представляет интерес оценка характера зависимости температуры размораживания сегментальной подвижности в аморфной фазе полимера от степени его кристалличности 2.6]. Для этого рассмотрим 1 моль сегментов аморфной фазы, занимающий объем V. В процессе кристаллизации полимера его аморфная фаза подвергается деформации. Допустим, что эта деформация носит характер всестороннего расширения (или сжатия). Добавочное отрицательное давление, вызывающее это расширение, [c.56]


    Изменение конформационной энтропии связано с изменением времени релаксации теплового движения сегментов. Эту связь можно найти из равенства [c.56]

    Замедленность конформационных переходов в наиболее вероятное состояние (исходное) после снятия нагрузки определяет релаксационный характер процесса. Время релаксации т полимеров в высокоэластическом состоянии равно Ю" —10" с оно значительно превышает т низкомолекулярных жидкостей ( 10 ° с). [c.309]

    Таким образом, даже такая минимальная информация о матрице Кирхгофа, как значение ее любого главного минора, позволяет найти свободную энергию полимерной молекулы. Подробность описания конформационной статистики возрастает с увеличением информации о матрице К. Так, зная ее спектр, можно найти средние размеры молекулы и распределение ее радиуса инерции [75]. Эта же информация позволяет вычислить с помощью обобщения теорий Рауза [76] и Зимма [77] динамические свойства гауссовой молекулы в терминах спектра ее времен релаксации [75, 78]. Для этой цели Фореман [78, 79] вместо матрицы К = ВВ , являющейся обобщением на разветвленные молекулы матрицы Зимма [77], использует аналог В В матрицы Рауза [76]. Поскольку отличные от нуля собственные значения матрицы Кирхгофа совпадают со спектром матрицы Рауза, то получающиеся при использовании двух различных подходов выражения идентичны. [c.177]

    Эффективное понижение времени поперечной релаксации происходит в том случае, если рассматриваемые ядра периодически изменяют свои ларморовы частоты. Это явление представляет большой интерес для химии, так как для различных внутри-и межмолекулярных динамических процессов, таких, как протонный обмен, конформационные переходы (валентная таутомерия), могут происходить быстрые и обратимые изменения резонансных частот отдельных протонов. В том случае, если этот механизм целиком определяет поперечную релаксацию, то из температурно-зависимых величин Гг, которые связаны с ширинами линий (уравнение VII. 9), можно определить значения скоростей реакций. Таким образом, с помощью спектроскопии ЯМР могут исследоваться кинетические процессы, и этот метод играет важную роль в исследовании быстрых обратимых реакций. [c.241]

    Ряд работ посвящен исследованию спектров ЯМР ангиотензина II, дающих наибольшую информацию о пространственном строении молекулы. Однако единства в интерпретации экспериментальных данных нет и здесь, Одни авторы [41] считают, что спектры свидетельствуют о существовании ангиотензина II в растворе в одной конформации, имеющей преимущественно вытянутую форму. Другие [42] делают вывод о том, что молекула имеет свернутую форму, в которой ароматические боковые цепи остатков Туг и His располагаются параллельно друг другу и эффективно взаимодействуют, а карбонильная группа остатка Asp образует водородную связь с аминогруппой остатка Туг . Изучение времени С-спин-решеточной релаксации привело авторов работы [43] к выводу о наличии большой конформационной подвижности первых двух остатков и отсутствии -изгиба у этой части молекулы. Авторы работы [44], используя тот же метод, пришли к иному заключению. Они считают, что все остатки ангиотензина II, за исключением остатка Туг , имеют примерно одинаковую конформационную свободу в наибольшей степени ограничена подвижность боковой цепи остатка Туг , взаимодействующей с многими остатками молекулы. Вицинальные константы всех остатков ангиотензина II [36, 45, 46] имеют значения, удовлетворяющие любым величинам ф, у каждого остатка в низкоэнергетических областях R, В и, следовательно, 2 комбинациям конформационных состояний остатков в пептидной цепи молекулы. Всего для молекулы ангиотензина на основе экспериментальных данных, главным образом спектров ЯМР, было предложено не менее десяти различных моделей (см. [22, 26, 27]). [c.280]

    Метод ЯМР релаксации. Введение наполнителей мало влияет на время спин-решеточной релаксации Ть Более чувствительным является процесс спин-спиновой релаксации в связи с тем, что этот процесс сильно зависит от медленных конформационных движений эластомера. В резонансной модификации метода ЯМР параметром, наи- [c.477]

    Однако, как уже отмечалось (см. 5.3.1), у кристаллических полимеров в отличие от низкомолекулярных кристаллов плавление происходит не при определенной температурной точке, а в некотором интервале температур. Под Тпя понимают среднюю температуру этого интервала. Кроме того, у полимеров температура плавления и температура обратного фазового перехода из аморфного (высокоэластического релаксационного состояния) в кристаллическое состояние - температура кристаллизации (Гкр)-не одинаковы, причем Г л > (средней температуры интервала кристаллизации). С увеличением Гкр интервал температуры плавления сужается. Все это связано с явлениями релаксации. Таким образом, у однофазного кристаллического полимера существуют три температурных характеристики Гкр <Тпл<Ту. Температура плавления, как и Т , зависит от энергии межмолекулярного взаимодействия (энергии когезии) и от способности макромолекул к конформационным превращениям (гибкости цепей) тем выше, чем больше энергия когезии и меньше гибкость макромолекул. В каждом конкретном случае определяется соотношением двух величин энергии когезии и потенциального барьера внутреннего вращения. [c.152]


    Очень разбавленный раствор освещают поляризованным УФ-светом, возбуждающим поляризованную же люминесценцию меток. Подвижность меток приводит к деполяризации люминесценции, происходящей по экспоненциальному закону того же вида, что затухание эффекта Керра. Время релаксации поляризованной люминесценции т является прямой мерой подвижности метки, а подвижность эта (особенно — хотя и не обязательно,— если метка находится в главной цепи) однозначно характеризует локальные или общие конформационные степени свободы. Обычно т исчисляется наносекундами, но при образовании вторичных макромолекулярных структур можег [c.62]

    Молекулы АТ обладают некоторой гибкостью, т. е. способностью к конформационным превращениям. С помощью поляризованной люминесценции комплексов IgG с люминесцирующими красителями были установлены времена вращательной релаксации т, оказавшиеся порядка 50 не (см. 5.5). Эти значения соответствуют броуновскому вращательному движению не всей молекулы белка, но малых ее участков, т. е. указывают на гибкость молекулы белка. По-видимому, домены обладают подвижностью. Взаимодействие гаптена с АТ приводит к заметному увеличению X, что указывает на изменение конформации АТ. Было установлено, что при образовании комплекса АТ—А Г конформация АГ также меняется. Данные оптических измерений подтверждаются исследованиями спектров электронного парамагнитного резонанса антител, содержащих парамагнитные метки. [c.126]

    Блюменфельд (1972) выдвинул гипотезу релаксационных конформационных переходов в митохондриальных мембранах. Допустим, что элементарный акт состоит в присоединении электрона к активному центру (скажем, к группе гема цитохрома). Нейтральной форме макромолекулы соответствует равновесная конформация I, заряженной (восстановленной)—другая конформация — П. Перенос электрона происходит много быстрее конформационного изменения. Следовательно, при протекании элементарного акта образуется неравновесное конформационное состояние — электрон перешел, но конформация не успела измениться. Затем происходит медленная релаксация к состоянию П. Весь переход можно представить схемой (минус обозначает электрон)  [c.439]

    Энергия, выделяемая в элементарном акте, запасается в форме конформационной энергии в течение времени релаксации. За [c.439]

    Фиксированная последовательность звеньев означает неполное равновесие цепи. Цепочечная структура обусловливает особенности флуктуационного поведения. Характерное время конформационной релаксации длинной и гибкой цепи пропорционально Л/ (Л/ — число звеньев). Условие стабильности цепи имеет вид [c.144]

    Недавно Шварц предложил теорию химической релаксации при кооперативных конформационных переходах в линейных биополимерах [128]. Исследована релаксация в переходах спираль—клубок в полипептидах на основе модели Изинга. Теория применима как к коротким, так и к длинным цепям. Показано, что конформационный переход контролируется наибольшим временем релаксации. [c.479]

    Впервые предположение о том, что процесс диффузии низкомолекулярных жидкостей или их паров в полимеры определяется не только проникновением молекул сорбата в поры полимера, но главным образом связан с конформационными перестройками макромолекул, т. е. с релаксационными процессами, сопровождающими процесс диффузии, было высказано П. И. Зубовым [71]. В ранних работах В. Е. Гуля и Б. А. Догадкина [72, 73] рассматривалось изменение релаксационных свойств полимеров в процессе набухания, изменение конформационного набора макромолекул, а также проводилось модельное описание кинетики набухания. Среди экспериментальных исследований в этой области отметим работу [74], в которой изучалось набухание каучуков в ряде растворителей различной полярности. Следует отметить, что конформационные перестройки макромолекул в процессе набухания могут привести к вырождению больших времен релаксации. Эти перестройки могут быть настолько глубокими, что часто вызывают кристаллизацию полимера, и тогда происходит выталкивание растворителя из полимерного образца. Все эти факторы влияют на кинетику процесса сорбции и приводят к своеобразному виду кинетических кривых. [c.215]

    На рис. 7.5 показаны кривые релаксации напряжения для блок-сополимера, содержащего 62% полистирола. Расчетные точки достаточно хорошо укладываются на экспериментальные кривые. Определенные по уравнению (7.22) времена релаксации для различных образцов, приведенные на с. 226, с достаточной точностью совпадают с временами запаздывания 02 и 04, полученными по сорбционным данным. Следовательно, механизм набухания действительно связан с релаксационными процессами, проходящими в условиях конформационных перестроек макромолекул. [c.226]

    Таким образом, процесс сорбции и набухания полимеров в парах низкомолекулярных жидкостей, несомненно, связан с релаксационными явлениями (конформационными перестройками), приводящими к характерному виду кинетических кривых набухания. Кинетика этого процесса хорошо описывается с привлечением модели, содер кащей два характерных времени запаздывания. Процесс сорбции при этом сопровождается вырождением больших времен релаксации в системе. [c.228]

    Поскольку времена релаксации очень велики, сравнительно просто получить скорости сдвига 5, большие 1/т , и исследовать получающиеся свойства. Удобно работать при постоянном , когда молекулы достигают стационарного состояния с конечными конформационными возмущениями. Этого можио достичь только при поперечном сдвиге. Для разбавленных растворов (гл. 6) мы не рассматривали ситуаций поперечного сдвига, поскольку они вели к малым ( и поэтому [c.268]

    Интересная картина наблюдается при использовании в качестве наполнителей волокон из синтетических полимеров. Было обнаружено, что времена релаксации и энергии активации для данного полимера мало зависят от типа поверхности. Это позволяет сделать вывод о том, i To в механизме ограничения подвижности цепей вблизи границы раздела наибольшую роль играют процессы, связанные с обеднением конформационного набора макромолекул, ко- [c.108]

    Тот же вывод следует из данных о временах релаксации. Как видно цз рис. III. 13, введение пластификатора вначале несколько снижает времена релаксации, но переход от 1 к 10%-ному содержанию пластификатора практически не приводит к их изменению. Это связано, как мы предполагаем, с межфазной пластификацией на границе раздела и показывает, что введение пластификатора не оказывает существенного влияния на релаксационное поведение полимера в этой области. Это обусловлено доминирующим значением обеднения конформационного набора макромолекул на поверхности. [c.109]

    Увеличение энтропии активации в наполненных полимерах объясняется тем, что для перехода сегментов молекулы из одного положения в другое при релаксации цепи, эффективная жесткость которой повышена, требуется большее изменение конформационного набора по сравне- [c.134]

    Нри низких температурах (Т 50 К) структура белкового матрикса настолько жесткая, что атом железа Ре " " после отщепления СО не может полностью отрелак-сировать в МЬ к своему новому равновесному положению. Таким образом, при низких температурах рекомбинация СО и МЬ практически не затрагивает релаксационных процессов в белке. Положение принципиально меняется при Т > 180 - 200 К, когда происходит размораживание конформационных степеней свободы белка (ср. рис. Х.21). Крупномасштабные движения включают сдвиг высокоспинового атома Ре + до равновесного положения в полости гема дезоксиформы МЬ. Происходит общая релаксация конформационно-направленного состояния белка МЬ, к равновесному дезоксисостоянию, включающая активацию движений проксимального гис-93 на Р-спирали. Система характеризуется распределением активационных барьеров и констант скоростей, соответствующих разным подсостояниям, по которым флуктуирует молекула. Длина волны максимума полосы Н1 вновь возрастает до 116 см  [c.332]

    Конформационные переходы цепи с кинк-изомерамп, свободная энергия которой при наличии напряжения представляется сплошной линией (рис. 5.1), термодинамически необратимы, а внутренняя энергия переходит в тепло. Представляет интерес постоянная времени процесса перехода если она мала по сравнению со временем, в течение которого происходит растяжение цепи, то кривая напряжение—деформация не слишком сильно отличается от кривой, соответствующей сплошной линии на рис. 5.1, а если постоянная времени слишком велика, то переходы могут быть запрещены и цепи деформируются эластично. Однако при промежуточных значениях постоянных времени наибольшие напряжения не полностью вытянутых цепей будут зависеть от скорости, с которой происходят конформационные переходы, снимающие напряжение. Детальное рассмотрение данного явления потребовало бы изучения формы и взаимодействия цепных молекул, основ термодинамики необратимых процессов [15] и анализа потенциала вторичных, или вандерваальсовых, связей между сегментами [16]. Это привело бы к рассмотрению неупругого деформирования полимеров, которое не является предметом данной книги. Тем не менее все же представляет интерес некоторая информация относительно скорости переходов между различными кинк-изомерами, сопровождающихся релаксацией напряжения в системе. Так как любые переходы, приводящие к движению только одного кинк-изомера, обычно не вызывают удлинения цепи вдоль ее оси, то приходится учитывать по крайней мере одновременную активацию н аннигиляцию двух кинк-изомеров. Подобный процесс состоит из поворота четырех гош-связей и передачи поворота сегмента между кинк-изомерами можно оценить энергию связи, необходимую для преодоления потенциального барьера, которая должна составлять 33,5 кДж/моль для поворота гош-связи [7] и (2,1—5) кДж/моль для вращения СНг-группы [17, 18]. Следовательно, чтобы преобразовать весь кинк-изомер tgtgttgtgt в транс-конформацию, необходима энергия активации 46—63,6 кДж/моль. Можно предположить, что подобные преобразования напряженных цепей ПЭ к состоянию, свободному от напряжений, действительно происходят при скорости деформирования по крайней мере 1 с при температуре ниже точки плавления, т. е. при 400 К. Теперь мол<но рассчитать скорость данного процесса при 300 К с помощью выражения (3.22), которая оказывается равной 0,0018 с . При деформировании цепи энергия активации вращения сегмента только убывает, а скорость переходов, сопровождающихся ослаблением напряжения, возрастает [19]. С учетом подобного [c.130]

    Размеры микроблоков надмолекулярных структур, приведенные в табл. I. 1, подтверждаются опытами, в которых для линейных полимеров метилстирольного каучука СКМС-30 и бутадиен-стирольного каучука СКН-26 были исследованы диаграммы растяжения с заданными скоростями деформации (см. табл. 1.2). При тем- пературах ниже Гс (т. е. в области стеклообразного состояния) кривые деформации характеризуются наличием предела вынужденной эластичности Ов, что будет рассмотрено в гл. П. Процесс вынужденной эластичности связан с -тем, что время молекулярной релаксации т, характеризующее подвижность свободных сегментов и близкое по величине (но несколько большее) к среднему конформационному времени Тк [уравнение (1.23)], снижается при больших напряжениях (порядка 10 —10 Па) настолько, что сегменты становятся подвижными и высокоэластическая деформа-ция возможна. [c.66]

    Ползучесть. Под ползучестью понимают развивающуюся во времени деформацию образца под воздействием постоянного напряжения в различных схемах нагружения, например в условиях растяжения, сдвига или сжатия. Полная деформация нагруженного полимерного образца в любой момент времени суммируется из упругой, высокоэластической и необрау1мой деформации. Упругая деформация возникает вследствие изменения валентных углов и длин связей. Высокоэластическая деформация развивается во времени с убывающей скоростью и стремится к достижению равновесного значения. Время установления равновесной деформации зависит от конформационного набора цепей, температурных условий опыта и приложенного напряжения. Деформация вязкого течения наблюдается главным образом в полимерах линейного строения. Здесь существенно отметить, что в условиях релаксации макромолекула стремится перейти в равновесное состояние путем превращения вытянутой конформации в свернутую конформацию, а при [c.124]

    Модель свободносвернутой цепи в растворе типа Рауза не описывает локальных или мелкомасштабных движений цепи, охватывающих участок цепи из нескольких звеньев. В то же время анизотропные мелкомасштабные движения весьма эффективны для спин-решеточной релаксации ввиду локальности самих ядерных взаимодействий. В работах [191, 192] в качестве такого локального движения главной цепи рассматривалась перегруппировка (конформационный перескок) участка цепи в 3—4 связи (решеточная модель или модель коленчатого вала ), В решеточной модели зависящая от времени вероятность Р" того, что п-я связь цепи принимает направление, соответствующее выделенному на решетке направлению а, имеет вид  [c.273]

    Особенности на кривых у( ), v I) могут возникать и в отсутствие кооперативных взаимодействий вследствие неравновесных конформационных свойств фермента. Допустим, что молекула фермента, переработавшая субстрат в продукт, выходит из реакции в активном конформационпом состоянии. Если время релаксации, т. е. время возвращения в исходное певозмущепное состояние, больше времени между встречами фермента с субстратом или того же порядка, то кинетика может имитировать кооперативную. Схема такого процесса показана на рис. 6.17. Здесь Ра — свободная от субстрата молекула фермента в исход-лой конформации, Р1 — неактивный ФСК, Р — активный ФСК, Ра — свободный фермент в активной конформации. Решая соответствующие уравнения стационарной кинетики, получаем скорость реакции [c.204]

    Эта картина полностью согласуется с концепциям электрон-но-конформационных взаимодействий (ЭКВ) и конформона. Применительно к ЦПЭ можно предположить, что в пункте сопряжения создается лабильный комплекс между переносчиком и некоторой группой в активном центре фермента сопряжения, роль которой, вероятно, играет аденин связанного АДФ. Прп релаксации 1 II в какой-то момент энергетический уровень, на котором находится электрон, понижается до акцепторного уровня аденина. Эти два уровня разделены барьером, по возможен под-барьерный туннельный переход электрона на аденин. Увеличение электронной плотности на аденине сопровождается резким повышением основности аминогруппы. Если в активном центр АТФ-синтетазы имеется электрофильная группа (папример, карбоксил), то аденин реагирует с нею, образуя амидную связь. В следующий момент релаксации уровень переносчика опускается ниже уровня адепнна и электронная плотность переходит с аденина обратно на редокс-группу того же пли следующего переносчика электрона в ЦПЭ. [c.440]

    Дальнейшее понижение уровня во // и повышение в / происходят в результате копформациоппых изменений, имеющих характер релаксации к новому равновесному состоянию, отвечающему новому распределению зарядов. После этого происходят обратное туннелирование электрона из 11 на нижний уровень /, новая поляризация обеих ям и конформационная релаксация к исходному состоянию. Цикл завершается. Условия резонанса, необходимые для туннелирования, обеспечиваются поляризацией и кон-формациопными переходами. [c.479]

    Метод спиновых меток оказался весьма эффективным для изучения структуры биологических мембран и конформационных явлений в мембранах [263, 264]. Весьма перспективно изучение ядерной релаксации в биополимерах, содержащих парамагнитную метку. Время релаксации зависит от взаимодействия спинов ядра и электрона и, следовательно, от расстояния между ними (Т пропорционально г ). Тем самым, можно получить информацию о геометрии молекулы и о ее движениях [265]. В работах [266] изучались спектры ЭПР и ЯМР алкогольдегидроге-назы, меченной аналогом никотинамидадениндинуклеотида. Оказалось, что метка конкурирует с НАД-Н в месте связывания ферментом, сильно иммобилизуется белком, резко изменяет время релаксации протонов воды, причем величина Т сильно зависит от концентрации спирта. Установлено место связывания спирта этим ферментом и оценены кинетические и геометрические характеристики системы. [c.346]

    Полученные данные показывают заметное влияние границы раздела с твердым телом на подвижность молекулярных цепей пол нм ер ОБ, находящихся на этой грашще, и на их зависимость от толщины поверхностного слоя. Наблюдающееся расширение спектра времен релаксации указывает на то, что граница раздела оказывает различное влияние на подвижность тех илн 1ПШ1Х релаксаторов, участвующих в суммарном движении. Основной причиной изменения релаксационного поведения полимерных цепей в граничных слоях является обеднение конформационного набора цепей вблизи межфазовой границы вследствие конформационных ограничений, накладываемых поверхностью, или вследствие взаимодействия с нею. [c.161]


Смотреть страницы где упоминается термин Релаксация конформационная: [c.440]    [c.43]    [c.182]    [c.114]    [c.153]    [c.124]    [c.181]    [c.439]    [c.153]    [c.181]    [c.132]    [c.110]   
Биофизика (1988) -- [ c.44 , c.441 , c.443 ]




ПОИСК





Смотрите так же термины и статьи:

Конформационные



© 2025 chem21.info Реклама на сайте