Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Мембранные процессы селективность

    Поверхностные явления играют ключевую роль в мембранных процессах и существенны для всех типов мембран, кроме газодиффузионных. Абсолютные значения коэффициента проницаемости и селективности мембран, температурная и барическая зависимость этих характеристик, во многом определяются закономерностями сорбционного процесса на поверхности и в матрице мембраны. Обычно допускается, что скорость сорбции намного превышает скорость переноса массы и распределение вещества между сорбированной и объемной фазами равновесно. Поэтому ограничимся анализом условий сорбционного равновесия и разделительных характеристик равновесного сорбционного процесса. [c.42]


    Допущение о локальном равновесии позволило существенно упростить математическое описание стационарного мембранного процесса, разделить влияние сорбции и диффузии и представить проницаемость и селективность мембран как произведение сорбционного и диффузионного факторов  [c.16]

    Рассмотрим влияние энергетического сопряжения на результирующий перенос массы и селективность мембранного процесса в стационарных условиях [1]. Для анализа введем следующие комплексы феноменологических коэффициентов из уравнения (1.7)  [c.18]

    Для промышленной реализации мембранных процессов разделения смесей необходимы полупроницаемые мембраны, характеризующиеся высокой разделительной способностью (селективностью), высокой удельной производительностью (проницае- [c.430]

    Анализ энергетического совершенства основной стадии мембранного процесса — селективного проницания — выполнен в разд. 7.2.2, где исследовано влияние свойств мембраны и параметров газовой смеси на локальные характеристики процесса. [c.262]

    Нетрудно заметить, что наилучшими диффузионными характеристиками обладают газы с компактной неполярной молекулой и низкими значениями критической температуры. Подобный подход носит качественный характер и может быть использован лишь для предварительной оценки селективности мембранного процесса. [c.80]

    Расчет потерь эксергии в процессе селективного проницания газов через мембрану сводится к интегрированию диссипативной функции по всему объему мембраны, которое можно представить в форме последовательного интегрирования по толщине (вдоль координаты г) и площади поверхности мембраны А  [c.241]

    Выполненный выше термодинамический анализ процесса селективного проницания касался несопряженного массопереноса через мембрану при разделении смеси идеальных газон и ограничен локальными характеристиками. [c.248]

    С ростом давления Р энергетическое совершенство процессов в модуле быстро падает, причем определяющее влияние оказывает рост потерь эксергии в процессе селективного проницания через мембрану. Общий вид зависимости т]мд = 11(Рг) определяется видом функции Ппр = т](Р) ), так как сумма относитель- [c.261]

    Одной из главных задач, которые предстоит решать в ближайшем будущем, является раскрытие механизма процессов селективной проницаемости мембран и создание количественной теории мембранных процессов. Это, Б свою очередь, в значительной мере поможет при разработке основных положений теории направленного получения мембран с заранее заданными свойствами, а также позволит проводить технологический расчет и проектирование мембранных аппаратов и установок без постановки предварительных экспериментов. В этой связи большое значение приобретают исследования по выявлению влияния внешних факторов (давления, температуры и др.) на селективность и проницаемость мембран, поскольку они не только отвечают на вопрос, для каких целей и в каких интервалах переменных может быть наиболее рационально использован данный метод, но и помогают глубже познавать сущность мембранных процессов. [c.169]


    При исследовании процессов селективной проницаемости мембран обычно стремятся создать в аппарате такие гидродинамические усло- [c.173]

    Согласно Комплексной программе химизации предусмотрено применение в основных технологических процессах катализаторов нового поколения с повышенной активностью, селективностью, надежностью и сроком службы. Широкое использование в различных отраслях народного хозяйства найдут мембранные процессы при разделении жидких и газовых смесей, производстве особо чистых веществ, фотоматериалов, хлора, каустической соды, химических добавок, очистке сточных вод и извлечения из них ценных компонентов. [c.184]

    Газообразные в-ва очищают путем селективной конденса-щш (или десублимации), селективного поглощения р-рами, расплавами или гранулированными твердыми в-вами, твердые в-ва-перекристаллизацией (в частности, в гидротермальных условиях см. Гидротермальные процессы), зонной плавкой (см. Кристаллизация), с помощью химических транспортных реакций и др. Для очистки часто используют селективное окисление, восстановление или комплексообразование. Применяют также разл. виды хроматографии, мембранные процессы разделения, дистилляцию, ректификацию. [c.214]

    Макроциклические лиганды вводят в состав многих мембран с целью разделения ионов металлов [61] и создания ион-селективных электродов [62—63] Макроциклические лиганды используют в биохимии и в биофизике для моделирования процессов селективного переноса ионов через биологические мембраны [16] [c.22]

    Значительный энергетический резерв имеют сами химические производства. Например, КПД синтеза аммиака находится в пределах от 25 до 42%, а винилхлорида — от 6 до 12%. Дело не только в объективных причинах. Химики по традиции многие годы стремились повысить выход продуктов реакции, но не занимались созданием энергосберегающих технологий. Как следствие многие технологические процессы исключительно расточительны в энергетическом смысле. Например, классические процессы ректификации имеют КПД от 6 до 15%. Замена этих методов разделения жидкостей методами, основанными на применении полупроницаемых мембран или селективной абсорбции, могла бы увеличить КПД в несколько раз. Неоправданно много энергии расходуется на химических предприятиях компрессорами, аппаратами для измельчения твердых фаз и вентиляторами. Создание более экономичных конструкций таких агрегатов значительно улучшило бы энергетический баланс химических производств. [c.78]

    Основными факторами, существенно влияющими на скорость и селективность мембранных процессов разделения, являются концентрационная поляризация, рабочее давление и температура, гидродинамические условия внутри мембранного аппарата, природа и концентрация разделяемой смеси. [c.433]

    Особо следует указать на попытки использовать для процессов дегидрирования углеводородов мембранные катализаторы, селективно проницаемые для водорода. В частности, запатентован сплав палладия с 25% серебра в качестве контакта де- [c.170]

    Аналогично способам формования трубчатых мембран предложено осуществлять и изготовление ТФЭ нз полос плоской полупроницаемой пленки. При этом обеспечиваются условия для создания непрерывного процесса, значительно сокращается трудоемкость производства, снижаются требования к точности изготовления каркаса, увеличиваются возможности конструктивной модификации ТФЭ. Так, фирмой Мицубиси разработаны конструкции и способ изготовления ТФЭ (рис. П1-26, а), при котором сердечник 3, имеющий на поверхности продольные каналы 4 для отвода фильтрата, последовательно покрыт сетчатой подложкой 2 и полупроницаемой мембраной 1 селективным слоем наружу. Подобную же конструкцию и способ изготовления ТФЭ разработала фирма Рамикон (рис. П1-26, б). Сердечник 3, имеющий такие же ка- [c.134]

    Массообмен в каналах с двусторонним проницанием также уменьшает диапазон изменения хк хт по сравнению с процессом при одностороннем расположении мембран. Зависимость Хц1хщ= (а) для всех случаев имеет минимум, далее происходит истощение газовой смеси в напорном канале и величина внешнедиффузионного сопротивления начинает падать. Наиболее резко это выражено для мембран высокой селективности. [c.156]

    Подставив выражения для химического сродства Аг, скорости реакции Vrr и перекрестного коэффициента г в уравнение диссипативной функции (7.77) и интегрируя ifo по объему мембраны (см. 7.45), можно получить уравнение для расчета и анализа потерь эксергии в процессе селективного проницания через реакционно-диффузионную мембрану. Необходимое значение степени сопряжения массопереноса и химического превращения находят по уравнению (1.18) на основе опытных значений коэффициента ускорения Фь Предполагается также, что известно распределение концентраций всех компонентов разделяемой газовой смеои и веществ матрицы мембраны, участвующих в реакциях, как решение системы нелинейных дифференциальных уравнений (1.26). Энергетическая эффективность процесса при 7 = Гер оценивает эксергетический к. п.д., вычисляемый по уравнению (7.71). [c.255]


    Обессоливание воды электродиализом и обратным осмосом не требует применения хим. реагентов и характеризуется существенно меньшими энергетич. затратами по сравнению с дистилляцией. При электродиализе используют селективные мембраны ионообменные, прн обратном осмосе-полупроницаемые мембраны, пропускающие молекулы воды, но задерживающие растворенные минер, и орг. в-ва. Расход электроэнергии иа 1 м воды, обессоленной электродиализом, составляет 6-30 кВт-ч/м , обратным осмосом-1,5-15 кВт-ч/м . Электродиализом воду можно обессолить на 90%, обратным осмосом-на 98%. В установках обратного осмоса рабочее давление достигает 5-10 МПа, укладка мембран м. б. по типу фильтропресса, трубчатая, рулонная (спиральная и в виде полого волокна). См. также Мембранные процессы разделения. [c.398]

    По мере истощения смеси исходного состава Х >х и развития диффузионного пограничного слоя по длине мембранного элемента происходит уменьшение доли легкопроникающего компонента и приближение локальных к. п.д. проницания к максимальному значению. При xf<.x заметно смещение функции г]пр = т](д ш) влево от точки максимума (см. рис. 7. ), т. е. ухудшение термодинамического совершенства процесса селективного проницания. [c.262]

    МЕМБРАНЫ ЖЙДКИЕ, полупроницаемые жидкие пленки или слои, обеспечивающие селективный перенос в-в в процессе массообмена между жидкими и (или) газообразными фазами. Различают свободные, импрегнированные и эмульсионные М. ж. Свободные М. ж,-устойчивые в гравитац. поле слои жидкости, отличающиеся по плотности от разделяемых ими фаз, напр, слой орг. жидкости, расположенный под водными р-рами в обоих коленах и-образной трубки. Импрегнированные М. ж. представляют собой пропитанные жидкостью пористые пленки (полипропиленовые, полисуль-фоновые, политетрафторэтиленовые и др.) или волокна (полипропиленовые, полисульфоновые). Эмульсионные М. ж,-стабилизированные ПАВ жидкие слои, отделяющие капельную фазу от сплошной в эмульсиях типа вода-масло-вода нли масло-вода-масло. Толщина свободных М. ж., как правило, св. 1 мм, импрегнированных 10-500 мкм, эмульсионных 0,1-1,0 мкм. М. ж. могут быть одноко шонентными и многокомпонентными. Первые являются для проникающего через М. ж. в-ва лишь более или менее селективным р-рителем, осуществляют пассивный перенос. Многокомпонентные М. ж. обычно содержат хим. соединения-переносчики, растворенные в мембранной жидкости и способные избирательно связывать и переносить через мембрану диффундирующее в-во (индуцированный либо активный транспорт). Перенос в-в через М. ж. может протекать в режиме диализа и электродиализа (движущая сила процесса-градиент хим илн электрохим. потенциала по толщине мембраны, см. Мембранные процессы разделения ). [c.31]

    Сравиеиие затрат энергии на мембранный и криогенный методы разделения показывает, что даже при использовании мембраны Р-П, обладающей относительно невысокой селективностью, но большой производительностью, мембранный процесс получения обогащенного до 30% (об.) кислородом потока более выгоден. С использованием более селективных мембран эффективность мембранной установки увеличивается [91, 95]. [c.312]

    Учитывая сказанное выше и основываясь на современных представлениях о связанной жидкости, развитых в работах Б. В. Дерягина, Н. В. Чураева и сотр. i[171—173, 223—227], процесс селективной проницаемости мембран по отношению к водным растворам электролитов можно рассматривать следующим образом. [c.203]

    Другой путь сводится к разработке новых процессов с пониженной энергоемкостью, среди к-.рых наиб, перспективны 1) селективная адсорбция газов при переменном давлении . 3) суперкритич. флювдная экстракция, основанная на св-вах сжатого сверхкритич. газа (диоксид углерода, этан, этилен и др.) изменять растворяющую способность при изменении плотности 3) кристаллизация из расплавов - весьма эф( ктивный путь разделения и очистки орг. соед., имеющих т-ры плавления между -50 и 200 °С, при существенно меньших, чем в случае ректификации, энергозатратах, при высокой эффективности и наиб, глубине очистки по сравнению с др. процессами разделения 4) мембранные процессы разделения. [c.241]

    См. также Мембранные процессы разделения селективные 1/798 3/33-57 сплошные 3/53, 36 электролизные 5/390 адерные 3/36 Менадион 1/749 3/388, 390 Менахнноны 1/749 Менделевий 3/57 1/131, 132 3/413, 957, 939 Менделеева весы 1/690 замазка 2/312 [c.645]

    При этом, мембранный процесс имеет, как правило, большую селективность, чем однократное равновесное пспаренпе, не требует охлаждения до низких температур п циркуляции абсорбентов, что снижает до минимума издержки эксплуатации. Поэтому, если мембранный процесс способен обеспечить необходимое качество продукта прп нужном его давленпп, процесс следует использовать. Использовать комбипироваипые (гибридные) процессы целесообразно прп соблюденпп следующих условий  [c.489]

    НЫМ полиэлектролитом (так называемым комплексообразователем) координационные соединения - полимерные комплексы. Размер этих комплексов намного больше размера несвязанных ионов, поэтому при продавливании раствора через ультрафильтрационную мембрану последние вместе с растворителем проходят через нее, образуя пермеат, а полимерный комплекс остается в ретанте. Схема процесса селективного извлечения ионов ценных металлов с использованием комплексообразования и ультрафильтрации представлена на рис. 24-7. [c.330]

    Мембранный электрод, селективный по отношению к Fe(III) [927], позволяет определять 2-10 М 80Г с ошибкой 5% в присутствии ионов Fe(III) и фиксированной концентрации С1 - и NOg-ионов. Электрод реагирует на концентрацию незакомплексованного Fe(IH) в процессе титрования SO раствором Ba lg [988]. [c.140]

    Поскольку индивидуальность веществ в наибольшей степени проявляется в химических реакциях, то прежде всего проявление избирательности характерно именно для мембран, проницаемость которых определяется образованием новьгх соединений в фазе мембраны. Само тюнятие селективность в описании мембранных процессов было впервые использовано для характеристики биологических мембран, которых можно рассматривать как важнейшую группу мембран реакционного типа. Принципы фушщио-нирования биологических мембран рассматриваются в ряде монографий [123-125]. Обратим внимание только на аналитический аспект их применения. [c.217]

    Диффузионный мембранный метод в системе жидкость- твердое тело - газ получил название исиарение через мембрану или первапорация. Метод основан на селективной проницаемости некоторых материалов для различных компонентов жидких смесей. Явление селективной проницаемости впервые обнаружено на каучуковых мембранах для смесей углеводород - спирт. От.чичи-тельной особенностью процесса мембранного испарения от других мембранных процессов является переход проникающих через мембрану веществ из жидкого состояния в парообразное, для чего требуется подвод к системе энергии, 1Ю меньшей мере равной теплоте испарения пермеата. Из этого следует, что испарение через мембрану может быть использовано практически лишь тогда, когда селективность переноса гораздо выше, чем при простом испарении, в частности, для разделения азеотропных и близко кипящих смесей. Движущей силой процесса мембранного испарения является разность химических потенциалов по обе стороны мембраны. Длл поддержания химического потенциала на достаточно высоком уровне необходимо предотвратить конденсацию иермеата на поверхности мембраны со стороны пара. Это достигается непрерывным отводом пара, обдувом инертным газом или вакуумированием. [c.217]

    Испарение через мембрану осуществляется с помощью непористых полимерных мембран. Исходная жидкая смесь, подлежащая разделению, приводится в контакт с одной стороной селективно проницаемой мембраны, проникшие через мембрану вещества в виде пара удаляются с другой стороны мембраны. Низкие значения парциальных давлений проникающих через мембрану компонентов обеспечиваются путем создания вакуума со стороны паровой фазы или с помощью газа-носителя (см. раздел 18). В отличие от большинства других мембранных процессов, для проведения которых не требуется подвода тепла, процесс испарения через мембрану требует испарения части исходной жидкой смеси. Поэтому данный метод разделения целесообразно использовать для выделения из жидких смесей компонентов, содержащихся в небольших количествах. Разделение смеси достигается за счет того, что различные компоненты смеси переносятся через мембрану с различной скоростью. С помощью испарения через мембрану могут эффективно разделяться азеотропные жидкие смеси, проявляющие положительные отклонения от закона Рауля, разделение которых при помощи обычного процесса ректификации невозможно. В настоящее время испарение через мембрану используется главным образом для дегидратации, т. е. удаления воды из органических растворителей или их смсссй. [c.32]

    Мембранные методы разделения обладают следующими достоинствами. Процессы разделения с помощью мембран осуществляются непрерывно. Энергетические затраты, как правило, являются сравнительно низкими. Разделение обычно осуществляется в мягких условиях. Процесс разделения легко масштабировать, так как установка может состоять из нескольких однотипных мембранных модулей. Мембранные процессы могут легко сочетаться с другими процессами разделения. При осуществлении мембранных методов разделения не требуется каких-либо добавок. Однако мембранные методы разделения имеют и некоторые недостатки. К их числу относится короткое время жизни мембран. Производительность мембранных установок снижается из-за таких явлений, как концентрационная поляризация (см. раздел 18), а также из-за загрязнения мембран. Кроме того, мембраннью методы разделения не всегда обладают достаточной селективностью. [c.33]

    Основными задачами, которые предстоит решать в ближайшем будущем в области развития и внедрения мембранных методов разделения смесей, являются изучение механизма и кинетики процессоЕ селективного переноса в мембранах и создание соответствующей количественной теории, разработка технологии производства эффективных полупроницаемых мембран с заранее заданными свойствами и оптимальных конструкций мембранных аппаратов и методов их технологического расчета. И несмотря на то что мембранные методы разделения уже используются в самых различных отраслях техники, инженерам и ученым еще только предстоит определить наиболее целесообразные с технико-экономической точки зрения о -ласти их применения. Многое здесь будет зависеть от уровня раа— вития соответствующих областей науки и техники, но методология подхода к оценке целесообразности использования мембранных методов разделения и учета конкретных условий его осуществления сохранится. В этом, на наш взгляд, и состоит основное значение представляемой читателю книги, написанной ведущими зарубежными специалистами в области теории и практики процессов с использованием полупроницаемых мембран. [c.6]

    В книге кратко изложены основные механизмы мембранных процессов, обсуждены варианты их осуществления и связанные с ними перспективы, приведены свойства некоторых селективных мембран. От пичитепьной особенностью книги является большая информационная насыщенность графического материала. Обсуждены наиболее важные инженерные и экономические аспекты мембранных процессов разделения, тогда как описание конкретного устройства мембранных пакетов, механических, гидродинамических, электрических и других критериев конструирования аппаратуры для рассмотренных разделительных процессов носит скорее иллюстративный характер. Подход к учету взаимодействия мембраны и компонентов разделяемой смеси, приводящий в отдельных случаях к замене селективных мембран неселективными, является в некотором смысле диалектическим. [c.7]

    Обмен веществ, обеспечивающий процессы жизнедеятельности в живой природе, во многом связан с транспортированием различных ингредиентов через селективно проницаемые (полупроницаемые) мембраны. Высокая энергоэкономичность природных мембранных процессов разделения жидких и газовых смесей, а также высокая селективность проницаемости биологических мембран послужили предметом пристального внимания исследователей, побудив их к созданию подобных материалов и процессов разделения. [c.4]

    Со времени начала первых исследований достигнут уже зн чительный прогресс во всех областях технологии газового разделения. Например, были синтезированы новые мембраны, обладак>-щие повышенной проницаемостью и селективностью. Разработано новое специальное оборудование для осуществления разделения в больших масштабах, накоплен значительный опыт в конструировании аппаратуры и оптимизации процесса. Хотя первоначально работы проводились с органическими полимерными мембранами, были изучены также неорганические и металлические мембраны и барьеры. В результате стали хорошо понятными факторы, определяющие экономику использования процессов селективного проникновения, и в настоящее время возможны реальные оценки этого метода разделения. [c.304]

    Иоделирование процесса селективной гидрогенизации циклопентадиена в реакторе с мембранным катализатором [c.200]

    Современный электродиализный метод обработки воды представляет собой мембранный процесс, основанный на явлении переноса ионов электролита через селективные ионообменные мембраны под действием постоянного электрического тока. Обработка воды проводится в электродиализаторах — аппаратах, представляющих собой систему рабочих ячеек (дилюатных и рассольных камер), каждая из которых содержит мембраны противоположной полярности, разделенные лабиринтно-сетчатыми перегородкдми-прокладками или корпусными рамками с закладной либо ввариваемой сеткой. Прокладки и корпусные рамки с сеткой выполняют двойную функцию направляют течение жидкости между мембранами и создают турбулентность потока, повышающую эффективность процесса. [c.4]

    Типично для многих систем то, что из смеси, содержащей 50% одних и 50% других молекул, получается продукт, содержащий 80—90% молекул, не проходящих через мембрану. Так же как процесс дистилляции характеризуется числом тарелов, разделение мембранами характеризуется растворимостью в мембране и ее молекулярной структурой. Процесс селективного проникновения через мембраны пригоден для разделения различных жидких смесей. При помощи таких мембран можно разделить смеси близкокипящих веществ и азеотропные смеси, а также углеводородные смеси такие, как фракции нефти для выделения ароматических и изомерных углеводородов, чтобы улучшить их октановые числа. [c.228]


Смотреть страницы где упоминается термин Мембранные процессы селективность: [c.135]    [c.369]    [c.271]    [c.344]    [c.361]    [c.322]   
Процессы и аппараты химической технологии Часть 2 (2002) -- [ c.314 , c.325 , c.326 , c.328 ]




ПОИСК





Смотрите так же термины и статьи:

Мембранные

Процесс селективности



© 2025 chem21.info Реклама на сайте