Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Каучуки реакционная способность

    Существует много методов аналитического определения активного перекисного кислорода, хотя принципиально все они мало отличаются друг от друга. Ввиду различной реакционной способности отдельных типов перекисных соединений ни один метод не пригоден для универсального применения. Кроме того, продукты аутоокисления нефтяных углеводородов, жиров, каучуков и других веществ, образцы которых часто подвергаются анализу на содержание активного кислорода, могут содержать перекиси нескольких типов. Точность анализа таких окисленных продуктов каким-либо одним методом в ряде случаев считалась доказанной путем проверки этого метода на растворах чистых перекисей в идентичной среде (углеводородов, жиров и т. д.). Однако получавшиеся результаты часто не удавалось воспроизвести. [c.426]


    Реакционноспособность концевых функциональных групп. Реакционная способность функциональных групп в жидких каучуках [c.439]

    В нефтях крайне редко и в незначительных количествах встречаются олефины. Они были обнаружены, например, в бакинской, пенсильванской, галицийской, эльзасской и некоторых других нефтях. Большое количество олефинов и некоторых других непредельных углеводородов появляется в продуктах деструктивной переработки нефти. Эти углеводороды отличаются высокой реакционной способностью и поэтому легко полимеризуются, осмоляются, что приводит к снижению срока службы и хранения нефтепродуктов. Непредельные углеводороды являются нежелательными компонентами моторных топлив и смазочных масел. Многие непредельные углеводороды — ацетилен, этилен, пропилен, бутилен, бутадиен — получили широкое применение в производстве полиэтилена, полипропилена, синтетического спирта и каучука, пластических масс и других продуктов. [c.24]

    Сложность процесса окисления и сложная зависимость разных физико-механических показателей от степени и скорости окисления не дает возможности правильно судить о реакционной способности каучуков и резин по изменению их физико-механических свойств. К сказанному надо добавить существенное различие между каучуками, реакционную способность которых требуется оценить, и резинами, которые обычно подвергаются исследованию. [c.31]

    Высокая реакционная способность полиизопрена требует применения эффективных методов его стабилизации. Систематические исследования показали необходимость обеспечения высокой степени чистоты полиизопрена в отношении содержания в нем примесей металлов переменной валентности (железо, медь, титан), так как соединения этих металлов ускоряют окислительную деструкцию каучука. Другой способ повышения окислительной стойкости полимера —пассивация переходных металлов, остающихся в каучуке, путем перевода их соединений в неактивную форму, не оказывающую каталитического влияния на окисление полимера. [c.221]

    На окисление каучуков оказывает значительное влияние раз-ветвленность молекулярных цепей. Чем больше разветвленность молекул, тем легче развиваются окислительные процессы, вероятно, вследствие большей реакционной способности третичных атомов углерода. [c.62]

    Оптимальные свойства резин различного целевого назначения зависят как от абсолютного количества, так и от соотношения прочных и лабильных межмолекулярных связей [1]. Лабильные связи, образующиеся в процессе серной вулканизации, вследствие высокой реакционной способности снижают термическую и термоокислительную стойкость вулканизатов, являясь одной из важнейших причин их старения [2]. Введение в каучуки карбоксильных групп позволяет создавать сетку из лабильных и одновременно инертных по отношению к углеводородным цепям солевых групп, однако вследствие склонности к скорчингу, быстрого падения физико-механических показателей с ростом температуры и некоторых других недостатков, эти каучуки пока не нашли широкого промышленного применения. [c.405]


    Первый в мире синтетический каучук, полученный в 1928 г. акад. С. В. Лебедевым, был назван натрийбутадиеновым, так как натрий явился катализатором процесса полимеризации бутадиена. Натрий используют как восстановитель в органическом синтезе, в частности для восстановления жирных кислот в высшие спирты, применяемые в производстве синтетических моющих средств. Высокая теплопроводность натрия и легкость его превращения в жидкость являются причинами,, объясняющими использование этого элемента в качестве теплоносителя для обеспечения равномерного обогрева аппаратов химической промышленности, в атомных реакторах, в клапанах авиационных двигателей, в машинах для литья под давлением. Из сплавов свинца, содержащего 0,58% Ыа, девают подшипнику осей- железнодорожных вагонов, а сплав свинца с 10% Ыа идет иа приготовление антидетонатора моторного топлива — тетраэтилсвинца. Иногда натрием заменяют в электротехнике медь которая в 9 раз тяжелее этого металла шины для больщих токов делают из стальных труб, заполненных натрием. Большую реакционную способность [c.297]

    Примечания. 1. В качестве стабилизатора преимущественно используется 2,6-ди-г/>ег-бутил-4-метилфенол. 2. Рецептура для оценки качества ХБК содержит (масс ч) [18] каучука - 100, стеарина - 3, каптакса - 0,65, тиурама - 1,3, оксида цинка - 5, технического углерода ДГ-100 -50, серы -2,0. Реакционная способность галогенированного изопренового звена оценивается по способности к совулканизации с натуральным каучуком. Для этого к 100 масс-ч стандартной смеси добавляется 5 масс ч натурального каучука (чем меньше снижение прочности вулканизатов с такой добавкой, тем лучше свойства ХБК). [c.277]

    Учитывая высокую реакционную способность фенольных смол при переходе их из стадии резола в резит, можно повысить эффект усиления каучуков проведением процесса отверждения смолы до вулканизации в среде каучука. Такой процесс осуществляется н любом смесительном оборудовании, применяемом в резиновом производстве, имеющем температуру, достаточную для отверждения смолы. Так, например, на разогретые вальцы загружают каучук и добавляют измельченную смолу, которая плавится и равномерно распределяется в каучуке, образуя липкую массу. Через несколько минут, в зависимости от температуры оборудования и скорости отверждения смолы, каучуко-смо- [c.104]

    Наряду со свойствами пластика, 1,2-СПБ обладает высокой эластичностью, характерной для каучуков. Наличие в структуре полидиена виниловой группы объясняет его достаточно высокую реакционную способность. Вследствие этого 1,2-СПБ, подобно другим диеновым каучукам, может быть легко вулканизирован. [c.31]

    Двойные связи в молекуле каучука играют большую роль, поскольку они обусловливают реакционную способность водорода в аллильном положении наличие таких атомов водорода позволяет проводить вулканизацию — процесс, состоящий в образовании сульфидных мостиков между [c.254]

    Винилацетилен является практически единственным исходным продуктом для синтеза хлоропрена — мономера для получения хлоропренового каучука. Благодаря своей высокой реакционной способности он находит применение для ряда синтезов, в том числе и для синтеза дивинила (гидрированием). [c.256]

    В производстве БНК используется бутадиен того же качества, что и в производстве бутадиен-стирольных каучуков. Акрилонитрил применяется с концешрацией выше 99%. Он получается различными способами, из которых важное значение приобрел синтез его из пропилена, аммиака и кислорода. Акрилонитрил характе-рпзуется следующими свойствами т. кип. 77,3 °С, растворимость в воде 7,3%, растворимость воды в акрилонитриле 3,17о- Не содержащий посторонних примесей акрилонитрил устойчив к окислению на воздухе и нагреванию. Как технический продукт хранится в присутствии гидрохинона, р-нафтола и др. Двойная связь акрилонитрила обладает высокой реакционной способностью, обусловленной ее поляризацией цианогруппой, атом азота которой смещает я-электроны двойной связи и понижает ее электронную плотность. Благодаря поляризующему влиянию цианогруппы акрилонитрил обладает способностью к полимеризации и сополимеризации [7, 8]. [c.358]

    Для Объяснения механизма усиления каучуков. термореактивными смолами необходимо учитывать их высокую реакционную способность и многофункциональность. Поэтому можно предположить образование. различных каучуко-смоляных структур на молекулярном и надмолекулярном уровне. [c.123]

    На скорость коррозионного разрушения оказывает сильное влияние реакционная способность полимера и химическая активность среды. Так, на примере резины из каучука СКС-30-1 по-казано , что с увеличением константы диссоциации кислот (с близкими молекулярными массами, чтобы исключить влияние диффузии) долговечность полимера уменьшается (табл. 16). [c.296]

    Влияние РТФ на свойства диенуретановых эластомеров показано на примере полибутадиендиолов радикальной полимеризации в работе [71]. Реакционная способность концевых групп в жидких каучуках и их функциональность оказывают существенное влияние на свойства эластомеров вследствие особенностей формирования пространственной сетки при структурировании жидких каучуков. [c.443]


    Индивидуальные газообразные углеводороды, которые получаются либо непосредственно из сырой нефти или природного газа, либо путем крекинга более тяжелых нефтепродуктов, используются для производства химических продуктов, пластмасс и синтетического каучука (см. гл. XIII) или как сырье процессов каталитического превращения — полимеризации и алкилирования, ведущих к получению жидких углеводородов (см. гл. II). Большинство процессов каталитического превращения базируется на использовании реакционной способности олефинов и диолефинов, которые содержатся в газе. Часто ненасыщенные соединения получают дегидрированием пли деметанизацией насыщенных углеводородов приблизительно такого же молекулярного веса. Так, этан моншо дегидрировать в этилен, а пропан либо дегидрировать в пропилен, либо разложить па этилен и метан. Эти и подобные реакции [1 —10]1 имеют место в термических процессах, протекающих при 550—750° С. Термическое разложение Taiioro типа легко объясняется радикальным механизмом. По существу аналогичный характер имеют реакции разложения жидких углеводородов. Тел не менее дегидрирование H-oj xana и к-бутиленов, которое [c.296]

    Галогенирование увеличивает реакционную способность двойных связей и, кроме того, приводит к возникновению в молекулах новых реакционных центров. Для галогенированных каучуков можно использовать вулканизующие системы, эффективные для структурирования обычного бутилкаучука. Разработано также значительное число систем вулканизации, реагирующих с аллильным хлором или бромом. Эффективным вулканизующим агентом галогенированных бутилкаучуков является окись цинка [18—20]. Отличительной особенностью бессерных вулканизатов галогенированных бутилкаучуков является высокая теплое гойкость. [c.353]

    ДйкаЛьной полимеризации ё присут<И вйИ зодийитриЛьМоМ инициатора, обладают более высокой реакционной способностью, чем карбоксильные группы в таких же каучуках, полученных с использованием перекисных инициаторов [11]. Это объясняется тем, что первые более склонны к ассоциации за счет присутствия нитрильных групп, на что указывает их повышенная вязкость. [c.441]

    XXVI съезд КПСС указал на необходимость создания и освоения производства новых видов пластмасс со специальными свойствами для обеспечения прогресса в решающих областях науки и техники. Большие успехи были достигнуты в десятой пятилетке в производстве синтетических каучуков, полноценно заменяющих натуральный. Особенно большое значение приобретают работы в области кинетики и катализа, электрохимии, химии полимеров. В этой связи следует обратить внимание па цикл работ Обнаружение и исследование аномально высокой реакционной способности молекул в упорядоченных системах , выполненных в институте химической физики АН СССР, на химическом факультете МГУ и в Научно-исследовательском физико-химическом институте им. Л. Я. Карпова под руководством акад. [c.502]

    В инертных растворителях был определен период полураспада различных перекисных соединении [307, 308] (рис 40) Ра дикалы, образующиеся при разложении перекисеи, имеют высо кую реакционную способность и эффективно вулканизуют эти ленпропиленовые каучуки Для сшивания насыщенных полимеров наиболее широко используется перекись дикумила [c.89]

    В качестве объектов модификации использовали i, 4-цис-олигобутадиен и олигобутадиен смешанной микроструктуры, выпускаемые в промышленном и опытнопромышленном масштабе Аминирование каучуков осуществляли алифатическими аминоспиртами - моно- и диэтаноламинами (МЭА и ДЭА) в массе на стадии эпоксидата и в среде различных расгворителей. Исследована реакционная способность аминов при взаимодействии с эпоксиолигобутадиенами. Показано, что глубина реакции с МЭА за 5 ч при ПО С составляет 90-100% [c.79]

    Разработаны межфазные добавки для повышения эксплуатационных свойств смесей полиолефинов с полиамидами, представляющие собой интерполимерные полиамидно-каучуковые соединения. Установлен характер влияния рецептурного состава (типа и содержания полиамида, каучука и аминосодержащих низкомолекулярных реакционно-способных соединений) и технологических параметров процесса получения межфазных добавок на структуру и свойства полимерно-кау чу коввых интерполимеров. Установлено, что применение разработанных добавок позволяет повысить ударостойкость полиамидно-полиолефиновых смесей с содержанием полиамида 70-80% на 30-40%, стабилизировать их вязкостные характеристики и повысить стойкость к активным средам при введении от 1 до 3% масс, межфазных добавок. [c.161]

    В каждом конкретном случае применяют смолы различных вязкости и реакционной способности. Для снижения вязкости допускается введение небольших количеств спиртов в жидкие фенольные и крезолоформальдегидные смолы, полученные в присутствии едкого иатра или аммиака. Новолачные фенольные смолы, которые можно модифицировать бутадиеннитрильным каучуком, растворяются в смеси ацетона, уайт-спнрита п толуола этот раствор должен содержать ГМТА. [c.244]

    Клей на основе хлоропрена и фенольных смол. Известно, что при полимеризации 2-хлорбутадиена может происходить как 1,4-, так и 1,2-присоединение. Атом хлора в аллильном положении в случае 1,2-присоединения обладает большей реакционной способностью, и связь С—С] легко разрывается. Хлоропреновый каучук известен под названиями неопрен (фирма Du Pont ) и байенреи [c.252]

    Для объяснения указанных явлений плодотворны механо-химй-ческие представления, рассматривающие глинистые агрегаты как блоки макромолекул. Их анизометрия и микродефекты обусловливают неравномерное распределение напряжений даже при весьма малых деформациях. На отдельных участках они значительно превышают молекулярные силы, скрепляющие между собой агрегаты и пачки частиц, и могут даже достигать критических значений, больших, чем энергия ковалентных связей, действующих внутри решетки. Это приводит к разрыву агрегатов. И здесь деструкция идет лишь до определенного предела с выделением объемных фрагментов, величина которых определяется числом кристаллохимических дефектов. При растяжении или сдвиге внутри щчек в первую очередь нарушаются связи между отдельными блоками, но но мере возрастания межатомных расстояний происходит разрыв ковалентных связей, что вызывает механическую активизацию химических реакций. Например, А. С. Кузьминский установил, что при окислении растянутого каучука энергия активации надает до 3 ккал/моль. В результате становятся возможны реакции, типичные для свободных радикалов. У глины это может усилить ее реакционную способность. У классических полимеров при отсутствии акцепторов наиболее вероятны реко1 биЕации, сращивание цепей, восстановление ковалентных связей. В присутствии различных акцепторов, которыми могут являться примеси или специально введенные вещества, [c.79]

    Менее ясен вклад перегибридизации орбиталей в реакциях отрыва в ненапряженных полимерах. Дело в том, что реакционная способность молекул и радикалов в полимерах понижена, как мы видели, из-за жесткости клеток, в которых осуществляются бимолекулярные реакции. Поэтому снижение константы скорости реакции отрыва при переходе из жидкости в твердый полимер нельзя приписать только одному из этих двух факторов. Достаточно очевидно, что в условиях ограниченной подвижности сегментов в кристаллической фазе и в стеклообразном состоянии в аморфной фазе (при Т < Tg, где Tg - температура стеклования) запаздывание перегибридизации может существенно замедлить отрыв радикалом атома И от полимера. В аморфной фазе при Т> Tg сегменты достаточно подвижны, и, видимо, эффект запаздывания перегибридизации выражен слабо. В каучуках, где подвижность фрагментов макромолекулы высока, запаздывания перегибридизации практически не наблюдается. [c.241]

    Определение химического состава полимера является первостепенной задачей, поскольку наличие тех или иных функциональньк групп в полимере даже в количестве около 1% мае может оказывать решающее воздействие на все его показатели. Количество непредельных связей в каучуке определяет его стабильность при окислительном старении, способность к вулканизации и т.д. Еще большее значение имеет анализ химического состава полимеров в тех случаях, когда они являются продуктами сополимеризации. Как известно, состав сополимера отличается от состава исходной смеси вследствие различной реакционной способности мономеров и, если неизвестны константы сополимеризации мономеров, его можно найти только аналитическим путем. Очевидно, что в случае двойных сополимеров (а таких большинство) достаточно определить содержание звеньев лишь одного из сомономеров. Если второй сомономер резко отличается от первого по составу (наличием азота, хлора, серы и др.) или по степени непре-дельности (например, в случае сополимеров олефинов и диенов), то анализ может быть выполнен химическим путем и без больших затруднений. Однако анализ таких сополимеров, как бутадиен-стирольные, затруднителен, и предпочтительнее пользоваться физическими методами. [c.32]

    Роль высоких давлений не ограничивается предотвращением процессов высокотемпературной диссоциации (автоклавы с газовой средой) или выращиванием монокристаллов (а-втоклавы с жидкостями). Высокое давление действует на электронные оболочки атомов и молекул, существенно из.меняя их реакционную способность. Вследствие сильного сжатия атомов подвижность электронов изменяется таким образом, что ионные связи превращаются в ковалентные, а при давлении примерно 10 МПа образуются металлические связи. Эти изменения существенно сказываются на свойствах веществ. Например, сталь при давлении 1200 МПа становится эластичной, как каучук, а элементарная сера, которая в обычных условиях ярляется ндсальнь . диэлектриком, п ) давлении 40 000 МПа ирозодит электрический ток. [c.125]

    Все алкены обладают повышенной реакционной способностью в реакциях окисления, полимеризации, алкилирования и др. Это их свойство широко используется в нефтехимии низших олефинов, в производстве пластмасс, каучуков, алкилпро-изводных, моющих средств и т. д. Присутствие алкенов С5 и выше в нефтепродуктах (топливах, маслах, парафинах), как правило, ухудшает их эксплуатационные свойства (ухудшается стабильность при хранении из-за окисляемости и осмоления). [c.89]

    Низкая реакционная способность потимернои цепи СКЭП не позволяет осуществить этот процесс поэтому проб тема сер НОИ вулканизации этиленпропиленовых каучуков решается вне депнем в состав сополимера реакционноспособных диенов [c.113]

    Для термостойких клеев применяются составы на основе бутадиен-нитрильных каучуков и фенольных смол, содержащих метилольные и иные функциональные группы. Для достижения высоких прочностей крепления после дублирования склеиваемых материалов их прогревают при 150—200° С. При этом каучук структурируется вследствие высокой реакционной способности метилольных и диметиленэфирных групп смолы, а также вследствие непосредственного взаимодействия гидроксильных групп смолы с нитрильными группами каучука В смесях, содержащих новолачные фенольные смолы, при введении уротропина образуются метиламинные группы, которые реагируют с нитрильными каучуками по следующей реакции  [c.200]

    Если в каучуко-фенольные адгезивы вместо одноатомных фенолов ввести двухатомные (например, резорцин или б-метилре-зорцин), обладающие большей реакционной способностью (вследствие большей концентрации гидроксильных групп), получаются композиции с лучшими эксплуатационными характеристиками. Так, при механическом взаимодействии резорциновых смол с каучуками изготовлен клей ФРАМ-30 с высокими адгезионными свойствами к дюралюминию , стали, меди, серебру и другим металлам и сплавам, а также к химически обработанному фторопласту. [c.202]

    Применение современных пропиточных составов обеспечивает высокую прочность связи резин на основе каучуков общего назначения с различными волокнами. Прочность связи при 20° С равна 8— 2кгс см (по Н-методу). Прочность связи повышается при частичной замене формальдегида на аммиак. Большая эффективность адгезива связана с повышенной реакционной способностью образующихся при прогреве групп КЫНСНгОН и КСНгННСНгК.  [c.206]

    Дальнейшее повышение прочности связи на границе адгезив — резина, так же как и повышение прочности связи резин с непропи-танными волокнами, реализуется введением непосредственно в состав резиновых смесей частично конденсированных смол (содержащих реакционно-способные группы) или веществ, из которых при вулканизации непосредственно в среде каучука образуются указанные смолы, например резорцин и уротропин, резорцин и параформальдегид, смола алрафор и уротропин и т. п. 114-119 [c.206]

    Все алкены, особенно диалкены, обладают повышенной реакционной способностью в реакциях окисления, алкилирования, полимеризации и др. Присутствие алкенов и выше в нефтепродуктах (топливах, маслах) ухудшает их эксплуатационные свойства (из-за окис-ляемости и осмоления). В то же время они являются ценным сырьем нефтехимического синтеза в производстве пластмасс, каучуков, моющих средств и т. п. [c.33]


Смотреть страницы где упоминается термин Каучуки реакционная способность: [c.134]    [c.482]    [c.76]    [c.79]    [c.137]    [c.198]    [c.329]    [c.329]    [c.252]   
Технология резины (1967) -- [ c.58 ]

Технология резины (1964) -- [ c.58 ]




ПОИСК





Смотрите так же термины и статьи:

Реакционная способность молекулярной цепи каучука

Структура и реакционная способность каучука



© 2024 chem21.info Реклама на сайте