Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Основные технологические высокотемпературными

    В высокотемпературных процессах, в том числе и в процессах жидкофазной гидрогенизации, основной технологической целью является подготовка сырья к последующим стадиям глубокой переработки на стационарных катализаторах. А так как они весьма чувствительны к азотсодержащим соединениям, то в жидкофазных процессах стремились обеспечить максимальную деструкцию этих соединений. [c.209]


    На промышленной установке адсорбционной очистки жидких парафинов в движущемся слое алюмосиликатного катализатора в высокотемпературных газах, сбрасываемых в вытяжную трубу, содержались пары н-парафиновых и ароматических углеводородов (фракция 210-370°С) - суммарно 500-1700 мг/м , 1 000-6 ООО мг/м оксида углерода и до 10 ООО мг/м пыли катализатора основного технологического процесса. [c.198]

    Схемы конструкций образцов основных технологических проб отражены на рисунке 2.17. Технологические пробы основные на создание в сварных соединениях жестких условий, обеспечивающих повышенные темпы высокотемпературных деформаций. При отсутствии трещин при данных режимах сварки металл шва и околошовной зоны считают стойким к образованию горячих трещин. [c.648]

    При пиролизе пропана, бута а я газового бензина под общим давлением 0,5 атм максимальный выход ацетилена — 35% вес.— достигнут при 980—1040° С. На основании собственных исследований и литературных данных авторы приходят к выводу, что выход ацетилена при пиролизе лимитируется условиями процесса, независимо от технологической схемы. Соотношение выходов ацетилена и этилена меняется только в зависимости от условий, влияющих на кажущееся равновесие реакции дегидрирования этилена в ацетилен. Поскольку основными продуктами высокотемпературного пиролиза являются этилен и ацетилен, то достижению высоких выходов ацетилена способствуют высокие температуры при временах контакта достаточных для того, чтобы свести до минимума побочные реакции. Вероятно, этого достигнуть невозможно, если подвод тепла к газовому потоку осуществляется от стенки реактора или от какой-либо другой поверхности. Наиболее перспективными для повышения выхода ацетилена процессами пиролиза являются процессы, в которых тепло подводится при смешении исходного сырья с предварительно сильно нагретым газом-теплоносителем. [c.54]

    В промышленности существует большое разнообразие типов технологических печей. Используя современную классификацию печей но условиям теплообмена, можно большое количество разнообразных печей свести к трем основным типам —высокотемпературным, среднетемпературным и низкотемпературным печам. [c.4]

    Классификация печей. Термическая, высокотемпературная обработка реакционной смеси, а также возгонка металлов и окисление их паров осуществляется в печах различных конструкций. Печи являются основным технологическим оборудованием в производстве большинства видов пигментов. По цвету получаемых минеральных пигментов печи можно разделить на следующие виды  [c.149]


    В промышленности получили распространение установки гидродоочистки масел с высокотемпературной (210—240 °С) сепарацией основной массы газов от масляного гидрогенизата, что позволяет исключить повторный нагрев гидрогенизата перед удалением отгона. Технологическая схема одной из таких установок представлена на рис. У-4 [7, 81. [c.50]

    В настоящее время основное количество бутадиен-стирольного каучука выпускается при температуре сополимеризации 5°С (низкотемпературные каучуки), в меньших количествах при температуре полимеризации 50°С (высокотемпературные каучуки). Каучуки низкотемпературной полимеризации характеризуются более высокой молекулярной массой,, меньшим содержанием низкомолекулярных фракций, лучшими технологическими свойствами, хорошей совместимостью с другими каучуками. [c.249]

    Основные свойства теплового фронта химической реакции в неподвижном слое катализатора с технологической точки зрения представляют значительный интерес по следующим причинам 1) при движении теплового фронта в направлении фильтрации газа перепад температур во фронте (между максимальной и входной температурой реакционной смеси) может во много раз превосходить величину адиабатического разогрева смеси. Это позволяет осуществлять каталитический процесс без предварительного постороннего подогрева реакционной смеси до температуры, при которой химическое превращение протекает с большей скоростью 2) скорость распространения теплового фронта гораздо меньше скорости фильтрации реакционной смеси (что и дает возможность использовать такой режим) 3) при движении высокотемпературного фронта через холодный слой катализатора за областью максимальных температур образуется падающий по длине слоя температурный профиль (это свойство благоприятно с технологической точки зрения для многих, например экзотермических обратимых, процессов, так как обеспечивает высокую степень превращения или избирательность)  [c.305]

    С наиболее серьезными технологическими, аппаратурно-технологическими и технико-экономическими трудностями приходится сталкиваться, когда ставится задача значительного повышения степени использования нефти как сырья путем вовлечения в переработку наиболее высокомолекулярной ее части, как углеводородной, так и неуглеводородной, — смолисто-асфальтеновых компонентов нефти. Решить эту актуальную, но трудную задачу можно двумя принципиально разными путями либо разделение тяжелых нефтяных остатков на основные ее компоненты — углеводороды и смолисто-асфальтеновые вещества, с последующей раздельной переработкой и использованием этих компонентов, либо интегральная переработка тяжелых нефтяных остатков, без предварительного разделения их на компоненты, с использованием высокотемпературных процессов крекинга и пиролиза. [c.243]

    В высокотемпературных печах сопротивления в основном применяются следующие технологические процессы . [c.55]

    При подборе оптимальной композиции СПС применительно к конкретным геолого-физическим условиям необходимо учитывать совокупность свойств образующегося в пласте геля. Основные критерии подбора оптимальной композиции время гелеобразования, механическая прочность геля на сдвиг (величина начального градиента давления), стабильность технологических свойств геля во времени в пластовых условиях. Последний фактор особенно важен при закачке СПС в высокотемпературные пласты. Поэтому необходимо подбирать термостабильные композиции с учетом свойств растворителя и закачиваемой в пласт воды (минерализация, pH, присутствие солей железа и т. д.). Важными параметрами СПС являются адсорбционные характеристики реагентов, входящих в состав композиции, а также реологические свойства геля. Желательно, чтобы вода, фильтрующаяся в области созревшего геля, обладала дилатантным характером течения. [c.99]

    Высокая интенсивность процессов тепло- и массо-обмена в циклонных камерах сгорания определяет перспективность их применения в тех отраслях промышленности, где основой технологии служат диффузионные и высокотемпературные процессы. Возможности применения циклонов в технологических процессах разнообразны и широки, так как циклоны могут служить как основными, так и вспомогательными технологическими агрегатами. Поскольку циклон является форсированным аппаратом непрерывного действия, использование его приводит к необходимости перестраивать и все связанные с ним остальные агрегаты для осуществления непрерывного и высокопроизводительного технологического процесса. [c.164]

    Одной из важнейших задач топливно-энергетического баланса промышленного предприятия является рациональное использование тепловых отходов технологических производственных процессов, к которым в первую очередь относится физическое тепло газов, уходящих из основных рабочих камер агрегатов. Рациональное использование тепла уходящих газов не только является источником экономии топлива, но и оказывает непосредственное влияние на условия энергоснабжения, на возможность модернизации технологической схемы производства и на общие экономические показатели работы. Для высокотемпературной обработки керамических материалов (изоляторов, керамических блоков и т. д.) в промышленности применяют туннельные печи с неподвижной зоной обжига и перемещающимся материалом. Туннельные печи в последнее время получили большое распространение во всех областях керамического производства. [c.111]


    Методы технологического расчета и подбора параметров значительно отличаются для различных типов реакторов. При рассмотрении основных закономерностей была установлена сложность классификации химико-технологических процессов и соответствующих реакторов Й10 характеру операции (периодические и непрерывные) фазовому составу реагирующих масс (различные группы гомогенных и гетерогенных процессов), тепловому эффекту процесса (экзо- и эндотермические), наивысшей температуре (низко- и высокотемпературные), применяемому давлению (вакуумные, под атмосферным и высоким давлением), степени перемешивания (смешения и вытеснения), температурному режиму (адиабатические, изотермические и политермические). [c.80]

    Выбор основных энергетических параметров. Аппаратурное оформление нового высокотемпературного процесса потребовало рещения ряда весьма сложных задач конструктивного и энергетического характера для обеспечения заданных параметров технологического режима с наилучшими технико-экономическими показателями. [c.129]

    Более чем за столетнее существование коксохимической промышленности технологические схемы переработки высокотемпературных дегтей и использование получающихся при этом продуктов приняли определенные формы, в основе которых лежат процессы дистилляции, кристаллизации и выделения при помощи кислот и оснований соединений с основными и кислотными свойствами. Эти методы в настоящее время гарантируют получение только веществ, являющихся главными компонентами перегонки, т. е. веществ, содержащихся в той или иной фракции в наибольшем количестве, и многокомпонентных смесей в виде масел с определенными интервалами кипения, ассортимент которых превышает 60 наименований, включающих до 110 сортов 20]. [c.18]

    По технологическому осуществлению процессы экстракционной депарафинизации разделяются на две основные грунпыг высокотемпературные процессы, проводимые при температурах [c.153]

    Основными этапами при разработке реактора и САУ является построение математического описания процессов в реакторе, теоретическая оптимизация, качественный анализ описания, выбор типа реактора и исследование его статических и динамических свойств, определенне основных технологических и конструктивных характеристик реактора, выбор каналов управления, поиск оптимального управления и, наконец, синтез САУ. Значения многих технологических параметров и конструктивных характеристик реактора, как, например, диаметр трубки, размер зерен катализатора, в значительной мере определяющих стоимость, надежность и гидравлическое сопротивление реактора, должны выбираться с учетом реально возможного качества работы САУ. Таким образом, уровень и стоимость системы САУ могут влиять на аппаратурно-технологические решения процесса, а для реакторов, обладающих пониженной стабильностью, целиком определить эти решения. Так, неустойчивость оптимального стационарного режима приводит к частым срывам на высокотемпературный или низкотемпературный режим. Система управления реактором возвращает этот режим в окрестность неустойчивого ста-циоиарного состояния, процесс в целом оказывается нестационарным, рыскающим в окрестности этого состояния. [c.21]

    Конденсированные ароматические соединения являются основными компонентами высокотемпературной смолы, которая, как и многие продукты переработки, в ряде технологических процессов подвергается тепловому воздействию. Под влиянием высоких температур происходит крекинг менее стабильных компонентов по наименее устойчивым химическим связям, энергия разрыва которых относительно невелика. При этом одновременно происходят параллельнопоследовательные реакции синтеза и распада, дегидрирования и гидрирования, перераспределения и рекомбинации радикалов и другие, сопровождающиеся выделением газов и прп определенных условиях появлением твердой фазы. [c.53]

    Основными технологическими стадиями производства синтетического диоксида кремния (СДК) особой чистоты являются жидкофазный каталитический гидролиз тетраэтоксисилана (ТЭОС) аммиачной водой отгонка водно-спиртовой фазы получившегося в результате гидролиза золя поликремневых кислот (ПКК) грануляция в процессе распылительной сушки концентрированного золя ПКК и высокотемпературная нормализация гранулированного СДК, в результате которой происходит дегидроксилирование и деэтоксилирование конечного продукта [1]. В аппаратурное оформление технологической схемы (рис. 1) входят секционный гидролизер [2], работающий в автотермическом режиме кожухотрубчатый выпарной аппарат [3] прямоточная распылительная колонна с теплоотводом от высокотемпературных стенок [4] и цилиндрическая шахтная печь непрерывного действия ПНД-200 [5]. [c.136]

    Одним из основных классификационных признаков промыщ-ленных трубчатых печей является их целевая принадлежность — использование в условиях определенной технологической установки. Так, большая группа печей, применяемых в качестве нагревателей сырья, характеризуется высокой производительностью и умеренными температурами нагрева (300—500 °С) углеводородных сред (установки АТ, АВТ, вторичная перегонка бензина, ГФУ). Другая группа печей многих нефтехимических производств одновременно с нагревом и перегревом сырья используется в качестве реакторов. Их рабочие условия отличаются параметрами высокотемпературного процесса деструкции углеводородного сырья и невысокой массовой скоростью (установки пиролиза, конверсии углеводородных газов и др.). [c.6]

    Технологические функции футеровки в печах химических производств особенно важны, так как в большинстве случаев, печь представляет собой высокотемпературный реактор, де проводятся различные химико-технологические процессы при высоких давлениях на которые оказывает химическое воздействие материал футеровки. Химические реакции, протекающие в печах при высокой температуре и давлении, являются основными чертами, по которым печв химической промышленности отличаются от других печей. [c.281]

    Краткое описание технологического процесса. ХТС изомеризации н-пентана предназначена для получения изопентана высокотемпературным способом [40, с. 851. Целевой продукт (изопентан) является остродефицитным, вследствие его широкого использования в качестве растворителя (производства изопренового каучука и бутилкаучука) в качестве компонента высокооктановых бензинов и для других целей. Технологический процесс производства изопентана представляет собой замкнутую химико-технологическую схему с материальными и тепловыми рециклами, что обусловлено современными требованиями рекуперации тепла и использования непрореагировавшего сырья схема состоит из следующих основных узлов азеотропная осушка исходной н-пентановой фракции, изомеризация н-пентана, водородсодержащего газа (ВСГ), комприми- [c.50]

    В 1975 г. Е. Фитцер [17] делает попытку охарактеризовать ресурсы и области использования тяжелых нефтяных остатков. Автор пытается оценить и количественные соотношения потребления нефтяных остатков в различных отраслях экономики и техники, в сопоставлении с общими их ресурсами. Основные аспекты работы — производство различных типов технологического углерода на основе высокотемпературной переработки нефтяных остатков, области применения и масштабы потребления технического углерода. Для оценки перспектив развития производства и областей технического применения сажи, кокса, графита, адсорбентов, автор считает необходимым предварительно получить надежную информацию но следующим позициям спецификация на сырье (нефтяные остатки) для производства различных видов технического углерода возможности модификации этого сырья с целью приведения их свойств в соответствие с требованиями спецификаций и стоимости спрос рынка и потребности в специальных видах технического углерода, вырабатываемого из нефтяных остатков экономические показатели — сопоставление стоимости получаемых изделий технического углерода с другими процессами переработки нефтяных остатков и капиталовложения в эти процессы. Не пытаясь дать общую картину развития производства технического углерода на базе переработки нефтяных остатков, автор утверждает, что главное направление использования нефтяных остатков должно быть тесно связано с развитием таких ведущих отраслей промышленности, как, например, алюминиевая, производство стали. Свое утверждение он обосновывает данными о перспективном потреблении кокса в этих отраслях в Западной Европе. Автор справедливо делает вывод, что на производство электродного кокса и пека идет лишь часть нефтяных остатков (не менее 25% от перерабатываемой нефти). Главными же направлениями использования этого нефтепродукта остается топливно-энергетическое потребление прямое потребление мазута как топлива, а также предварительная переработка но процессам гидрокрекинга, газо-фикации и использование в качестве исходного материала в про- [c.255]

    Экономичность технологических процессов определяется большим набором показателей, среди которых важное место занимают качественные показатели товарных продуктов и надежность и эффективность основного оборудования. Как показывают исследования, эти два показателя оказались взаимозависимыми. Трудность возникает вследствие того, что переработка нефти основана на реализации критических состояний, присущих различным фазовым переходам, и эти состояния должны реализоваться в конкретных точках технологической цепочки. Поскольку основными источниками энергии для реализации процессов являются тепловой нагрев и воздействие давления, которые являются мощными универсаш>ными источниками, но низко селективными, критические состояния реализуются не всегда там, где это запланировано. При этом частотный спектр воздействия предопределяет протекание параллельно несколько процессов не всегда желательных. В конечном счете это гфивеяет к тому, что качество продуктов ухудшается и требуются новые энергетические затраты на достижение поставленной цели. В то же время основное оборудование технологических установок начинает испытывать неучтенные при проектировании нагрузки. Особенно наглядно это видно на примере высокотемпературных процессов, таких как крекинг, коксование, пиролиз различных углеводородов. Все попытки решить задачу традиционными способами не дали ожидаемого результата. Развитие новых подходов дает обнадеживающий результат. Рассмотрение новых принципов иерархичности систем, фрактальности и ограничения роста позволяет наряду с применением рядов гармошгческой пропорции более точно определять критические состояния в пространстве и времени. [c.6]

    Технологическая схема производства и его аппаратурное оформление зависят от природы сырья, ассортимента вырабатываемых пеков и принятой технологии их получения [40,194...205,207...211]. На выбор технологической схемы влияет также структура нефтеперерабатывающего и нефтехимического предприятия, на котором создаётся производство пека и углеродных материалов на его основе. В коксохимической и нефтеперерабатывающей промышленности в основном испохазуются технологии, основанные на процессах термической и термоокислетельной поликонденсации, позволяющей сравнительно просто получать мягкие, средне- и высокотемпературные пеки с температурой размягчения от 60 до 250...350°С [c.126]

    Выбор обоснованной модели тепло-массопереноса в слое кускового углеродистого материала имеет первостепенное значение для организации оптимального технологического режима прокалки. Важной составляющей процесса тепломассоперсно-са является теплопроводность засыпки твердого дисперсного материала. Имеющиеся в литературе данные по теплопроводности дисперсных материалов относятся в основном к засыпкам мелкого угля, а данные по более крупным фракциям относятся к высокотемпературным коксам. С целью устранения имеющегося пробела были исследованы теплопроводность и температуропроводность засыпок кускового углеродистого ма териала, полученного на основе слабоспекающегося угля. [c.173]

    Наконец, необходимое соотношение между газифицированным топливом и воздухом, соответствовавшее пределам воспламенимости данной смеои, эта часть воспламенялась и становилась поджигательной зоной для всей остальной части образующейся смеси. Воспламенение начиналось уже в верхней части колодца, а основной пламенный процесс с развитием высокой температура газов переносился в рабочую полость печи, где велся высокотемпературный технологический процесс (например, варка стекла). [c.148]

    Рассеиванием естественных радионуклидов в окружающей среде сопровождаются все высокотемпературные процессы переработки минерального сырья. К ним относится металлургический процесс, а также производство тугоплавких материалов. В технологии получения огнеупоров температура достигает 2800 °С, тогда как температура кипения радия составляет 1140 С. Поэтому при электродуговой плавке и на других стадиях технологического процесса может происходить практически полное удаление в составе аэрозольных выбросов содержащегося в сырье радия, изотопов РЬ и Ро (Белячков и соавт., 1999). Заметим, что в докладах Научного комитета ООН по действию атомной радиации (НКДАР), РЬ и Ро рассматриваются как основные дозообразующие (наряду с Кп и " ТЬ) изотопы, поступающие от предприятий неядерной промышленности. [c.263]

    Следует отметить, что многие магнитные свойства ферритов являются структурно-чувствительными, т. е. сушественно зависят от керамической структуры материала, включая размер и форму кристаллитов, размер, форму и распределение пор. Поэтому проблема изготовления ферритовых керамических материалов с хорошо воспроизводимыми свойствами сводится в значительной мере к получению материалов не только с определенным химическим составом, но и определенной керамической структурой. Более того, получение керамических материалов с воспроизводимыми свойствами является ключевой проблемой материаловедения. Далеко не всегда удается получить материал с необходимым набором свойств, даже если его технология кажется достаточно освоенной, а в процессе изготовления не допущено очевидных технологических промахов. Неудачи особенно часты при получении твердофазных материалов, структура которых формируется в результате топохимических процессов, крайне чувствительных к исходному сырью и способам его переработки. Разумеется, что неприятности значительно усугубляются, когда требования к качеству материалов по тем или иным причинам повышены. Например, технология обычной керамики, используемой в бытовых целях, в свое время была автоматически перенесена на получение специальных видов оксидной керамики,, ъ том числе и магнитных материалов. Напомним, что эта технология включает смешение компонентов керамической массы в мельницах, формование смеси и высокотемпературный обжиг (спекание). Последовательное осуществление этих операций при приготовлении специальной керамики далеко не всегда приводит к успеху. Причины подобных неудач можно рассмотреть на примере получения ферритов с высокой магнитной проницаемостью, в частности марганец-цинковых ферритов состава Мпо,зз2по,б7ре204. Такие ферриты являются основными материалами для создания современных средств магнитной записи с целью высококачественного воспроизведения звука, телевизионных изображений и особенно для регистрации и хранения больших массивов информации. Отметим, что марганец-цинковые ферриты являются наилучшим материалом и для теле- и радиоаппаратуры, так как благодаря исключительно низким диэлектрическим потерям пригодны для изготовления сердечников вторичных источников питания. При их синтезе обычно осуществляют твердофазную реакцию [c.162]

    К 1993 году были созданы основные рецептуры шинных резин с учетом особенностей технологических процессов и оборудования проекта АП Шина . Так, разработана рецептура для беговой части протектора из 100 % крошкообразного бутадиен-стирольного каучука, обеспечивающая высокое сцепление с дорогой и повышенную стойкость к механическим повреждениям, Определена рецептура резиновой смеси для боковины шины на основе комбинации крошкообразных изопренового и дивинилового каучуков, характеризующихся высокой усталостной выносливостью, атмосферо стойко стью и стойкостью к высокотемпературной вулканизации, определен состав резин для крепления анидного и полиэфирных кордов (СКИ-3 и СКИ-3-01) с оптимальным комплексом адгезионных и усталостных свойств. Выданы рекомендации по составам резины гсрмослоя, различающихся типами полимеров на основе комбинации хлорбутилкаучука и натурального каучука (80 % ХБК + 20 % НК) и 100 % бромбутилкаучука. [c.471]

    Метод горизонтальной направленной кристаллизации (ГНК) представляет собой разновидность метода Бриджмена — Стокбаргера в горизонтальном варианте. Этот метод широко развит в нашей стране благодаря работам X. С. Багдасарова и его коллег по созданию ростового оборудования и разработке технологий выращивания на нем крупных монокристаллов высокотемпературных соединений иттрий-алюминиевого граната и корунда [3, 4, 5]. К достоинствам этого метода можно отнести возможность использования в качестве контейнерного материала молибдена — менее дорогостоящего и дефицитного по сравнению с иридием, применяемым в методе Чохральского возможность получения крупных пластинообразных монокристаллов относительную техническую и технологическую простоту исполнения. Основной недостаток метода ГНК —наличие контакта выращиваемого монокристалла с контейнером, с чем связано загрязнение расплава и возникновение в кристалле остаточных напряжений, трещин. [c.169]

    Аустенитные хромоникелевые стали являются одним из основных материалов оборудования нефтехимической, химической и пищевой промышленности, они широко применяются в низкотемпературной технике и физике высоких энергий. Одним из основных факторов, снижающих надежность и долговечность такого оборудования, являются коррозионные повреждения, развивающиеся по механизму межкристаллитной коррозии. Межкристаллитным коррозионным повреждениям подвержено оборудование, в эксплуатационный цикл которого включаются высокотемпературные технологические разогревы в интервале температур 773-973 К, ремонтные сварочные операции. Этот температурный интервал нагрева характеризуется возникновением и ростом карбидной сетки МсззСб в границах зерен стали 12Х18Н12Т (рис. 1.4.22), определяющей возникновение склонности к МКК. [c.80]

    Основной причиной возникновения межкристаллитной коррозии являются нагревы сталей при пластическом деформировании, термической обработке, сварке или технологические разогревы оборудования, приводящие к возникновению электрохимической гетерогенности между объемом зерен и приграничными участками в материале. В основном такая гетерогенность проявляется в образовании и развитии карбидных частиц, выделяющихся в границах зерен сталей при высокотемпературных нагревах. При этом происходит резкое обеднение по хрому зернограничного твердого раствора стали и изменение его электродного потенциала в местах фазовых превращений. Температурновременная область выделения зернограничных карбидных фаз в коррозиоппостойкой стали представлена на рис. 1.4.39. Внутри очерченной на рисунке области сталь обладает повышенной склонностью к межкристаллитной коррозии — сенсибилизацией. Область сенсибилизации может быть описана с помощью темпера-турно-временных параметров и — температурный интервал сенсибилизации, Тп,ь — минимальное время, необходимое для развития сенсибилизации. [c.117]

    Основная функция печи — обеспечить сырью требуемую температуру, поэтому реактор данного типа должен иметь устройство для получения энергии, устройство для доставки энергии сырьевым материалам и устройства контроля за процессами в сырье. Технический прогресс в области печестроения на всех исторических этапах развития техники характеризуется созданием специализированных печей для конкретного технологического процесса (или группы родственных процессов) и отказом от универсальных печных агрегатов. Только в этом случае можно избавиться от недостатков универсального печного агрегата, представленного на рис. 1.8.9.1 низкого коэффициента полезного действия (ЮТД), низких температур в обрабатываемом сырье, больших градиентов температур в сырье, длительного цикла загрузка—высокотемпературная обработка— разгрузка, вредного влияния компонентов топочных газов на химические процессы в сырье. Для повышения коэффициента полезного действия и температуры в течение всего индустриального и постиндустриального исторического периода человеческой истории проводилось совершенствование топливно-сжига-ющего устройства (состав топлива, состав окислителя, устройство подачи окислителя и удаления топочных газов) и теплоизолирующей футеровки в топке и реакционном объеме печи. Ввиду того, что теплопередача от печных газов к конденсированному сырью имеет [c.59]

    Высокотемпературные реакторы стоят несколько особняком среди основной массы химических реакторов. Высокотемпературными процессами принято называть процессы химического взаимодействия и фазовые переходы, происходящие 1фи температурах, когда энергообмен целевого продукта химико-технологической системы с окружающей средой протекает с возрастающим участием электромагнитных колебаний (в частности, светового излучения) и корпускулярного излучения. Граница между низкотемпературными и высокотемпературными процессами лежит в интервале 500-700 °С, В промышленности печи используются как для проведения химических реакций, так и для получения продуктов в результате высокотемпературных фазовых переходов (плавления, спекания, возгонки). Чаще всего в печи параллельно протекают все эти процессы, а конструкцию печи 01феделяет целевой процесс. [c.60]


Смотреть страницы где упоминается термин Основные технологические высокотемпературными: [c.26]    [c.9]    [c.430]    [c.49]    [c.8]    [c.136]    [c.856]    [c.77]   
Пожарная безопасность предприятий промышленности и агропромышленного комплекса (1987) -- [ c.0 ]




ПОИСК







© 2025 chem21.info Реклама на сайте