Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Потенциометрическое определение серебра иодидом

    Потенциометрическое определение серебра иодидом [109] [c.139]

    Была проведена оценка с помощью ЭВМ данных потенциометрического титрования хлорид-ионов с применением ионселективных электродов, стандартное отклонение при этом оказалось равным 0,1% [686]. Разработан ряд систем для автоматического потенциометрического определения хлорид-ионов в органических соединениях [582, 964], воде [10], в смесях с бромидами [733] и с бромидами и иодидами [318]. Определение хлорид-ионов в плазме и крови проводят с использованием приставки для автоматического титрования БИАН 1001 [36]. Чаще всего при потенциометрическом титровании хлорид-ионов в качестве титранта используют раствор азотнокислого серебра. Находят применение для этих целей раствор азотнокислой ртути(И) и другие титранты. [c.91]


    На рис. 71 приведена (схематически) ступенчатая кривая титрования всех трех галогенидов при совместном их присутствии. Четкость перехода от иодида к бромиду почти всегда вполне удовлетворительная, но переход от бромида к хлориду выражен менее ясно, особенно если содержание хлора превышает содержание ,брома. Известно, что при потенциометрическом титровании суммы галогенидов практически не удается получать хороших результатов вследствие того, что галогениды серебра, и особенно бромиды и хлориды, образуют смешанные кристаллы. Если же бромид отсутствует, то раздельное титрование иодида и хлорида проходит очень четко. Этот метод может быть использован для определения иодид- и хлорид-ионов в природных и иных водах, солях и промышленных растворах. [c.335]

    Железа(П) определение в горных породах. Железо(II) определяют методом косвенного потенциометрического титрования. После его полного окисления избытком раствора серебра (I) известной концентрации непрореагировавшие ионы серебра оттитровывают стандартным раствором иодида калия, используя для установления конечной точки титрования иодид-селектив-ный электрод 94-53 и электрод сравнения 90-02. [c.37]

    Электрод из пластиковой мембраны, импрегнированпый дитизоном, является индикаторным при потенциометрическом титровании серебра аскорбиновой кислотой [1107], оксалатом натрия, иодидом и гексацианоферроатом калия [1106]. Для связывания ионов цинка, свинца, меди и никеля при определении иодидом калия в анализируемый раствор вводят цитрат натрия [1106]. Ошибка титрования 10 —10 г-ион/л серебра составляет < 3,7%. Титрованию оксалатом мешают сульфаты натрия, магния, индия и меди, а при определении с гексацианоферроатом калия — этанол, ацетон, диоксан ( 25%). Нитрат натрия уменьшает скачок потенциала в точке эквивалентности. [c.99]

    Миллиграммовые количества серебра титруют кулонометрически электрогенерированным моноэтиленгликолем [1214] и цианид-ионами [535] с потенциометрическим определением конечной точки титрования. Купонометрическое титрование иодид-ионами можно проводить в расплаве нитратов лития и калия при 430 °К [11981. [c.132]

    В литературе описывается (потенциометрическое ультрамикро-определение серебра 209, 302, 356, 395] в одной капле слабокислого (НЫОз) 10 2—10 н. раствора нитрата серебра с относительной ошибкой до нескольких процентов. Титруют раствором иодида калия приблизительно такой же концентрации. [c.146]


    Как уже упоминалось, одной из наименее растворимых солей серебра является иодид, и поэтому иоди-дом калия можно пользоваться для потенциометрического титрования очень разбавленных растворов солей серебра. Титруют раствором КЛ растворы солей серебра при концентрациях 10 5 н. с точностью 0,2%, при концентрациях 10" н. — с точностью 1—2%, а при концентрациях 5- 10 н. — с точностью 3%. Определению серебра препятствуют ионы, окисляющие иодид-ионы. Мешающее определению влияние многих ионов и наблюдающиеся явления адсорбции устраняются введением в раствор этилендиа-минтетрауксусной кислоты (ЭДТА) [13]. [c.54]

    В слабокислой среде в присутствии комплексона только серебро и одновалентный таллий осаждаются иодидом калия, так как остальные катионы, как, например, свинец, висмут и медь, прочно связаны в комплекс и с иодидом не реагируют. В нейтральной среде серебро образует комплексное соединение Ag2Y , как было установлено амперометрическим титрованием его комплексоном Н14], и не осаждается иодидом. 1одробным исследованием этой реакции показано, что только в нейтральной среде можно потенциометрически определить серебро -при помощи серебряного индикаторного электрода. В кислых растворах, в которых происходит выделение иодида серебра, результаты всегда получаются пониженными. Авторы рекомендуют следующий ход определения. К раствору, содержащему не менее 1 мг серебра, прибавляют требуемое количество комплексона и 5 капель бромтимолового синего. После нейтрализации 0,2 н. раствором едкого натра (сине-зеленая окраска) раствор разбавляют до 50—100 мл и титруют с применением серебряного электрода 0,1 н. раствором иодида калия из микробюретки с делениями на 0,05 мл. Присутствующий в небольшом избытке комплексон на определение не влияет. Таким путем можно определить серебро в присутствии свинца, меди, висмута, кадмия даже и тогда, когда они присутствуют в 300-кратном избытке. Пятивалентный мышьяк и трехвалентная сурьма (связанные в растворе винной кислотой), не влияют на определение. Определению не мешает также таллий, если присутствует в не слишком большом количестве (Ag Т1=1 10). Присутствие двухвалентной ртути и катионов группы бария делает определение невозможным. Согласно авторам, метод можно с хорошими результатами применять для анализа различных сплавов с серебром. После их растворения в азотной кислоте к раствору прибавляют комплексон и винную кислоту (в присутствии сурьмы), нейтрализуют едким натром и титруют описанным способом. Аналогично поступают при анализе [c.139]

    В работе [38] описано прямое потенциометрическое определение бромида в интервале концентраций 10- —10- М при использовании Ag—AgBr-индикaтopнoгo электрода и каломельного электрода сравнения. Ацетат, хлорид, перхлорат, сульфат-ионы не влияют на определение на уровне их концентраций 2000 ррт, тогда как цианид, бихро.мат, иодид, перманганат и тиосульфат мешают при содержании их на уровне 10 ррт. Определению также мешают анионы, которые окисляют бромид до брома, взаимодействуют с Ag+ с образованием менее растворимых по сравнению с AgBr солей или образуют комплексы с ионом серебра. Эти анионы должны быть предварительно отделены. [c.271]

    Осадительное потенциометрическое титрование. К осадительному титрованию относят титрование, основанное на образовании малорастворимых солей серебра и ртути. Эти методы чаще всего используют для определения хлорид-, бромид- и иодид-ионов. В связи с этим осадительное потенциометрическое титрование представляет большой интерес для количественного определения лекарственных веществ, представляющих собой гидрохлориды (декамин, новокаин, эфедрин и др.), гидробромиды (галантамин, скополамин), гидро-иодиды (пахикарпин). [c.194]

    Дифференцированное определение I" и С1" в их смеси проводят титрованием 0,05 н. стандартным раствором нитрата серебра с серебряным индикаторным электродом и Нас.КЭ сравнения. Э. д. с. потенциометрической ячейки измеряют компенсационным методом. Поскольку ПРлд <С ПРддсь В первую очврвдь титруется иодид с большим скачком потенциала в конечной точке, но меньшим, чем при отсутствии хлорида. Теоретически скачок наступает несколько раньше точки эквивалентности, но практически точка эквивалентности и конечная точка титрования совпадают. Кривая титрования из-за присутствия хлорида не симметрична. [c.68]

    В качествепримера можно привести определение индия вспла-вах с серебром (отношение Ag 1п = 9 1) [166,167]. 0,5 г сплава растворяют в 5 мл концентрированной азотной кислоты, кипятят для удаления окислов азота, разбавляют до 200 мл и прибавляют 10 мл 0,05 М раствора динатриевой соли этилендиаминтетрауксусной кислоты, 5 мл пиридина и 10 капель 0,1 %-ного водного раствора пирокатехинового фиолетового. После этого светло-желтый раствор титруют 0,05 М раствором сульфата меди до появления голубой окраски. Описанным путем найдено 10,15% индия. Для контроля серебро было определено потенциометрическим титрованием иодидом калия, а после выделения серебра электролизом индий был определен в форме 8-оксихинолината. При этом найдено 89,91% Ag и 10,12% 1п. [c.104]


    Стандартный вариант метода описан Шинером и Смиттом [95], которые установили, что ошибка определения хлоридов меньше 0,1%. Что касается смеси галогенидов, то определение их суммы несложно, но определение каждого галогенида в смеси — задача значительно более трудная. Проблема в том, что осаждается смесь галогенидов серебра. Обычный вид кривой потенциометрического титрования показан на рис. 30. Мартин [96] показал, что на таких кривых конечные точки титрования иодидов и бромидов можно получить в точках пересечения двух касательных и что этот метод может быть распространен на анализ смесей галогенидов при соотношении компонентов даже превышающем 20 1. Титрованию хлоридов в смесях, содержащих хлорид и бромид, присущи те же ошибки, что указаны выше, потому что галогениды серебра легко образуют смешанные кристаллы или твердые растворы. Это приводит к соосаждению некоторого количества хлоридов с бромидом, т. е. значительно раньше осаждается хлорид, чем это должно было бы быть в соответствии с кривой титрования. [c.309]

    Потенциометрическое титрование сульфидов нитратом серебра при низких содержаниях сульфидов неосуществимо из-за их гидролиза и образования гидроксида серебра. Применяя плюмбат(П) натрия в качестве титранта, можно определить до 1 ррт сульфидов в присутствии 10 —10 -кратного избытка хлоридов, бромидов, иодидов, сульфитов, тиосульфатов или тноцианатов. Цианид при определении сульфидов описываемым методом должен отсутствовать [69]. Соли свнпца(П) предложено использовать как титрант при автоматическом потенциометрическом титровании нанограммовых количеств сульфидов [70]. Стандартное отклонение определений составляет 2% (при уровне содержания сульфидов 90 нг). Определению сульфидов этим методом не мешают галогениды, ацетат, сульфат, цианид, нитрат, фосфат и ионы аммония. Описываемый метод использован для определения серы в органических соединениях [71]. После сожжения образца серу восстанавливают в токе водорода над платиновым катализатором при 900°С и образующийся сероводород поглощают в специальном сосуде. Автоматически титруют сульфиды стандартным раствором свинца(II) с фиксацией конечной точки сульфидным ионоселек-тивным электродом. [c.575]

    Для определения 4—85 мкг сульфидов предложено кулонометрическое титрование с внутренней генерацией ионов серебра в основном цианидном растворе [72]. Точку эквивалентности титрования индицируют потенциометрически или амперометрически. Определению сульфидов описываемым методом пе мешают 100-кратные избытки хлоридов, бромидов, иодидов, тиоцианатов и тиосульфатов. Следовые содержания сульфидов можно определить автоматически, используя электрогенерацию иода [73]. Этот метод позволяет определять 1—50 мкг серы в виде сероводорода при объеме образца 10 мл. [c.576]

    Определение основано на переводе органических связанного-брома, введенного в полистирол в составе антипирена, в ионное состояние путем сжигания навески образца (3—20 мг) в колбе с кислородом с применением платинового катализатора. Продукты сгорания поглощаются раствором щелочи в присутствии пероксида водорода, образовавшийся бромид определяют методом потенциометрического титрования разбавленньш раствором нитрата серебра с индикаторным сульфид-серебряным электродом. Определению мешают хлориды и иодиды. [c.284]

    Для разложения органических соединений в кислороде су" ществует очень удобный метод пустой трубки , разработанный для определения галогенов. Он имеет разнообразные модификации. В наиболее важной из них диоксид серы поглощают в поглотительной трубке, заполненной электролитически осажденным серебром [9]. Полученный сульфат серебра растворяют в горячей воде и эквивалентное сере количество серебра опр " деляют потенциометрическим титрованием, используя в качестве титранта раствор иодида калия. Такеучи и др. [10] проводиЛ1 восстановление сульфата серебра водородом до сероводорода последуюп1ИМ его определением. [c.414]


Смотреть страницы где упоминается термин Потенциометрическое определение серебра иодидом: [c.181]    [c.194]    [c.127]    [c.144]    [c.369]    [c.77]    [c.96]    [c.427]   
Смотреть главы в:

Комплексоны в химическом анализе -> Потенциометрическое определение серебра иодидом




ПОИСК





Смотрите так же термины и статьи:

Иодиды

Иодиды определение

Потенциометрическое определение определение

Серебра потенциометрическое

Серебро иодид

Серебро определение потенциометрическое

потенциометрическое



© 2025 chem21.info Реклама на сайте