Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Гибридизация атомных электронных орбиталей

    В ионе аммония каждый атом водорода связан с атомом азота общей электронной парой, одна из которых реализована по донор-но-акцепторному механизму. Важно отметить, что связи Н—N. образованные по различным механизмам, никаких различий в свойствах (например, в энергии связи, дипольном моменте связей и т. д.) не имеют, т. е. независимо от механизма образования возникающие ковалентные связи равноценны. Указанное явление обусловлено тем, что в момент образования связи орбитали 2в- и 2р-электронов атома азота изменяют свою форму. В итоге возникают четыре совершенно одинаковые по форме орбитали. Поскольку форма этих новых орбиталей есть нечто среднее между формами 8- и р-орбиталей, то эти новые орбитали принято называть гибридными, а процесс их возникновения — гибридизацией атомных орбиталей (б).  [c.36]


    Гибридизация атомных электронных орбиталей [c.137]

    У элементов третьего и последующих периодов в образовании гибридных электронных облаков могут участвовать и -орбитали. Особенно важен случай хр -гибридизации, когда в образовании гибридных орбиталей участвуют одна 5-, три р- и две -орбитали, В этом случае образуются шесть равноценных гибридных орбиталей, вытянутых в направлениях к вершинам октаэдра. Октаэдрическая структура молекулы 5Рд, ионов [5 Рбр , [Ре(СМб)р- и ми 1Г 1Х других объясняется хр гЯ-гибридизацией атомных орбиталей центрального атома. [c.139]

    Гибридизация в молекулах аммиака и воды. Мы вкратце обсудили геометрическое строение соединений бериллия, бора и углерода, пользуясь концепцией гибридизации. При дальнейшем движении по периоду вправо мы переходим к соединениям азота и кислорода, геометрия которых уже обсуждалась в рамках чистых р-орбиталей. Такое рассмотрение нельзя признать целиком удовлетворительным, если помнить, что экспериментальные значения валентных углов в молекулах HgN (107°18 ) и Н О (104°ЗГ) больше, чем между чистыми р-орбиталями (90°). С другой стороны, экспериментальные величины гораздо ближе к 109°28 — тетраэдрическому углу при sp -гибридизации связей. Так возникла идея о существовании общей для всех элементов второго периода гибридизации атомных s- и р-орбиталей. В применении к молекулам HgN и HjO это выглядит так, как показано на рис. III. 15. Октет электронов вокруг каждого центрального атома располагается на четырех sp -гибридных орбиталях, причем в моле- [c.183]

    Какой тип гибридизации атомных орбиталей азота имеет место при образовании молекулы аммиака. Какую геометрическую форму в связи с этим имеет эта молекула Дать схему перекрывания электронных облаков. [c.146]

    Гибридизация атомных орбиталей характерна не только для соединений углерода. Представление о гибридизации необходимо использовать всегда при объяснении образования связей за счет электронов, которые в атомах принадлежат к разным орбиталям, не очень сильно отличающимся по энергии Значительное различие энергаи электронов препятствует гибридизации). [c.93]

    Квантовый расчет, показывающий, что орбитали с различной симметрией в свободном атоме при образовании химической связи принимают одинаковую форму, называется гибридизацией атомных орбиталей. Часто термином гибридизация обозначают расположение электронных облаков в молекуле, соответствующее данному приближенному расчету. Волновая функция гибридной орбитали составляется из волновых функций валентных электронов, умноженных на некоторые коэ( ициенты. Так, волновые [c.91]


    Гибридизация атомных электронных орбиталей. ........ [c.3]

    При образовании максимального числа а-связей (и отсутствии гс-связей) для всех указанных состояний азота характерна р -гибридизация атомных орбиталей, причем каждая неподелен-иая пара занимает одну гибридную орбиталь. Формирование наряду с о-свя зями л-связей обусловливает другие типы гибридизации— 5р -(эдна я-связь) или зр (две я-связи). В валентном электронном слое атома азота нет -орбиталей, поэтому атом азота ие может образовать более четырех ковалентных связей. [c.394]

    Решение. Запишем электронную формулу В ls 2s 2p. Как видно, в нормальном состоянии атом бора содержит один неспаренный электрон. В то же время бор находится в третьей группе периодической системы элементов и способен проявлять в соединениях валентность, равную трем, т. е. может образовать три химические связи. Это становится возможным при энергетическом возбуждении атома В, которое происходит при взаимодействии с атомами Р, когда один 5-электрон переходит на свободный /3-подуровень. Так как все три связи в ВРз равноценны, происходит смешивание, гибридизация атомных орбиталей с образованием трех энергетически равноценных хр -орбиталей, которые взаимодействуют с р-орбиталями атомов фтора  [c.30]

    Таким образом, осуществляется 5р -гибридизация атомных орбиталей Со . В ней участвуют -орбитали внешнего (четвертого) электронного слоя. Поэтому комплекс получил название внешнеорбитального . В этом случае в электронной оболочке Со " есть неспаренные электроны, что обусловливает парамагнитные свойства комплекса. Комплексный ион имеет октаэдрическое строение. [c.89]

    Возможны и другие случаи гибридизации атомных орбиталей, однако число образующихся гибридных орбиталей всегда равно общему числу исходных атомных орбиталей, участвующих в гибридизации. Так, при гибридизации одной я- и двух р-орбиталей зр--гибридизация) образуются три равноценные р -орбитали. В этом случае гибридные электронные облака располагаются в направлениях, лежащих в одной плоскости и ориентированных под углами 120° друг к другу (рис. 4.28). Очевидно, что этому типу гибридизации соответствует образование плоской треугольной молекулы. [c.137]

    Если при образовании химйческих связей возникают две sp-гибридные орбитали, расположенные друг к другу под углом 180° (см. рис. 11,9), то молекула будет иметь линейную форму. Примерами таких молекул являются молекулы галидов бериллия. Возбужденный атом бериллия имеет два неспаренных электрона (2s и 2р ), при гибридизации атомных орбиталей образуются две sp-орбитали. При взаимодействии бериллия с галогенами происходит перекрывание sp-орбиталей бериллия с р-орбиталями галогенов, в результате чего образуются молекулы линейной формы, например Вг—Ве—Вг. [c.44]

    Первая показывает контур функции Ч , . (синглетное состояние) с электронами (1) и (2), локализованными на фиксированной оси 2 вторая показывает контур функции (триплетное состояние) на этой оси. Можно видеть, что в обоих случаях есть максимумы для конфигураций, в которых первый электрон находится у ядра, где сама 1 -орбиталь имеет максимум, и второй удален на расстояние, где сама 2р-орбиталь имеет максимум. Из контурной диаграммы для синглетного состояния видно, что те конфигурации, в которых оба электрона находятся по одну сторону от ядра, преобладают, тогда как по контурной диаграмме для триплетного состояния видно, что преобладают конфигурации, имеющие электроны по разные стороны от ядра. В действительности, электроны с одинаковым спином будут иметь максимум вероятности нахождения по разные стороны от ядра на прямой линии, проходящей через ядро, т. е. под углом в 180° по отношению друг к другу. Как нетрудно заметить, тот же самый результат был получен ранее при гибридизации атомных з- и р-орбиталей с образованием двух эквивалентных гибридных хр-орбиталей. Единственное отличие здесь в том, что в данном случае рассматривались атомные конфигурации 1з 2р , а не /гs /гp , которые необходимы для образования эквивалентных гибридных орбиталей. Однако это было сделано только для простоты изложения. Угловая корреляция, которая будет рассмотрена далее, не зависит от того, имеют или не имеют и р-орбитали одно и то же главное квантовое число. [c.204]

    Гибридизация атомных орбиталей обусловливает также и более симметричное распределение электронной плотности в молекуле. [c.50]

    Результаты этого и ряда других весьма сложных расчетов хорошо воспроизводят а в некоторых случаях даже корректируют данные эксперимента по геометрической структуре молекул. Однако главная задача таких расчетов состоит в проверке и оценке точности полуколичественных и качественных стереохимических теорий, непосредственно перебрасывающих мост от структурной формулы химического соединения к геометрической форме его молекулы или иона. Мы рассмотрим три различающихся подхода к описанию геометрической структуры молекул 1) представления о гибридизации атомных орбиталей, 2) теорию отталкивания валентных электронных пар, 3) приближенную теорию МО. [c.137]


    Перекрыванием каких электронных орбиталей образуются химические связи в молекулах Ij, РН3, ВН3. В какой из данных молекул происходит гибридизация атомных орбиталей  [c.380]

    Кроме модели отталкивания электронных пар валентных орбиталей вопросы стереохимии молекул успешно решаются в рамках теории связи на основе представлений о гибридизации атомных орбиталей. Важнейшие типы гибридных орбиталей и соответствующие им конфигурации молекулярных частиц приведены в табл. 18. [c.114]

    Углерод встречается в виде трех модификаций — алмаз, графит и карбин. Каждая из этих модификаций отвечает определенному типу гибридизации электронных орбиталей в атомах углерода. При р -гибридизации орбиталей образуется кристаллический полимер углерода с атомной координационной кубической решеткой — алмаз. Вследствие р -гибридизации электронных орбиталей каждый атом углерода в алмазе образует равноценные прочные о-связи с четырьмя соседними атомами углерода (см. рис. 111.2). Такая структура полимера объясняет очень высокую твердость алмаза, отсутствие у него электронной про- [c.271]

    Книга всесторонне и доходчиво, а самое главное методологически правильно знакомит с теорией химической связи и результатами ее применения к описанию строения и свойств соединений различных классов. Сначала изложены доквантовые идеи Дж. Льюиса о валентных (льюис овых) структурах и показано, что уже на основе представлений об обобществлении электронных пар и простого правила октета при помощи логических рассуждений о кратности связей и формальных зарядах на атомах удается без сложных математических выкладок, как говорится на пальцах , объяснить строение и свойства многих молекул. По существу, с этого начинается ознакомление с пронизывающими всю современную химию воззрениями и терминами одного из двух основных подходов в квантовой теории химического строения-метода валентных связей (ВС). К сожалению, несмотря на простоту и интуитивную привлекательность этих представлений, метод ВС очень сложен в вычислительном отношении и не позволяет на качественном уровне решать вопрос об энергетике электронных состояний молекул, без чего нельзя судить о их строении. Поэтому далее квантовая теория химической связи излагается, в основном, в рамках другого подхода-метода молекулярных орбиталей (МО). На примере двухатомных молекул вводятся важнейшие представления теории МО об орбитальном перекрывании и энергетических уровнях МО, их связывающем характере и узловых свойствах, а также о симметрии МО. Все это завершается построением обобщенных диаграмм МО для гомоядерных и гете-роядерных двухатомных молекул и обсуждением с их помощью строения и свойств многих конкретных систем попутно выясняется, что некоторые свойства молекул (например, магнитные) удается объяснить только на основе квантовой теории МО. Далее теория МО применяется к многоатомным молекулам, причем в одних случаях это делается в терминах локализованных МО (сходных с представлениями о направленных связях метода ВС) и для их конструирования вводится гибридизация атомных орбиталей, а в других-приходится обращаться к делокализованным МО. Обсуждение всех этих вопросов завершается интересно написанным разделом о возможностях молекулярной спектроскопии при установленни строения соединений здесь поясняются принципы колебательной спектро- [c.6]

    Выше мы изложили традиционные квантовохимические представления о гибридизации атомных орбиталей на традиционных примерах (СО2, НС СН, Н2С==СН2, СН4, ВРз и т. д.). Однако эти представления, которые по праву можно назвать классическими, в ряде случаев оказываются неприменимыми. Одним из таких случаев является молекула 1,б-дикарба-/сло-зо-гексаборана (рис. 36), где четырех валентных АО углерода недостаточно для построения пяти ортогональных ГАО. Однако при отказе от требования ортогональности, как было показано С. Г. Семеновым, удается построить линейно-зависимый набор неорто-гональных ЛМО, преобразующихся друг в друга при операциях симметрии Оц1- Эти 15 ЛМО (6 двухцентровых, локализованных на связях СН и ВН 8 трехцентровых, локализованных на связях СВг и одна четырехцентровая, тождественная канонической 1 2г-М0, охватывающей атомы бора) с электронными заселенностями 2, не могут быть переведены унитарным преобразованием в исходные 13 канонических МО (сравни с рассмотренным выше случаем молекулы метана). [c.216]

    В органических соединениях наиболее часто встречаются ковалентные связи, образованные обобществле-нисм пар электронов в результате перекрывания атомных электронных орбиталей двух взаимодействующих атомов, В зависимости от типа перекрывания орбиталей в органических соединениях существуют о- и я-связи. Образование а-связи наблюдается при перекрывании орбиталей двух атомов таким образом, что максимум их перекрывания (и, следовательно, максимум электронной плотности связи) находится на линии, соединяющей центры атомов. Атомы углерода образуют с-связи всегда при помощи гибридных орбиталей (sp , sp или sp). Атомы углерода образуют я-связь при боковом перекрывании р-орбиталей двух взаимодействующих атомов с образованием двух максимумов электронной плотности по обе стороны от линии, соединяющей центры атомов, я-связь менее прочная, чем а-связь, и образуется только тогда, когда между атомами уже есть о-евязь. Атом углерода в состоянии sp -гибридизации образует 4 а-связи, направленные в пространстве под углом 109.5 друг относительно друга. Такой атом называют тетраэдрическим (пример СН4 — метан). Атом углерода в состоянии sp -гибридизации образует 3 ст-связи, направленные в одной Плоскости под-углом 120 , и одну я-связь, направленную перпендикулярно этой плоскости (пример СН2=СН2 - [c.91]

    Особенно велики атомные диполи, возникающие за счет гибридизации несвязывающих электронных орбиталей. Так, дипольный момент аммиака (1,46 О) обусловлен в основном моментом несвязывающей пары электронов азота, равным, как следует из расчетов, 3,67 О. Нужно заметить, что значения атомных диполей очень сильно зависят от величины гибридизационного параметра, которая не может быть определена экспериментально. Поэтому расчет атомных диполей весьма неопределенен и чувствителен к вводимым допущениям [9]. [c.41]

    Прп образопанни молекулы аммиака также происходит sp -гибридизация атомны. орбиталей центрального атома (азота). Именно поэтому валентный угол HNH (107,3°) близок к тетраэдрическому. Небольшое отличие этого угла от 109,5° объясняется, как и в молекуле воды, асимметрией в распределении электронных облаков вокруг ядра атома азота из четырех электронных пар три участвуют в образовании связей N-Н, а одна остается неподеленной. [c.138]

    Boзмoж IЫ и другие случаи гибридизации атомных орбиталей, однако число образующихся гибридных орбиталей всегда равно общему числу исходных атомных орбиталей, участвуюигих в гибридизации. Так, при гибридизации одной 5- и двух р-орбнтален ( р - г и б р и д и 3 а ц и я — читается эс-пэ-два ) образуются три равноценные 5р -орбитали. В этом случае гибридные электронные [c.137]

    Вернемся к рассмотрению пространственной структуры молекулы воды. При ее образовании происходит sp -гибридизация атомных орбиталей кислорода. Именно поэтому валентный угол НОН в молекуле Н2О (104,5°) близок не к 90°, н к тетраэдрическому углу ( 109,5°). Небольшое отличие этого угла от 109,5° 10ЖН0 понять, если принять во внимание неравноценность состояния электрон- ibix об.,1аков, окружающих атом кислорода в молекуле воды. В самом деле, в молекуле метана все восемь электронов, занимающие в атоме углерода гибрид- [c.138]

    При хр -гибридизации атомных орбиталей у четырех атомов углерода образуются диены (алкадиены) — непредельные углеводороды с двумя двойными связями. 5р -Гибридизация шести атомов углерода приводит к замыканию шестичленногр кольца и возникновению плоской молекулы бензола. У каждого атома углерода имеется также по одному негибридизованному р-элек-трону, который в случае бензола является нелокализованным. Эти шесть р-электронов образуют сопряженные л-связи и принадлежат всем атомам углерода в молекуле. Поэтому молекула [c.302]

    При таком расспаривании, как видно из схемы, один электрон оказывается на s-, а второй на р-орбитали. У хлора валентный электрон находится на р-орбитали. Если у бериллия валентные электроны будут различными, то в молекуле ВеСЬ одна связь ВеС1 будет (р — р)ст-связью, а вторая (s—р) ст-связью. Очевидно, что связи должны быть неравноценными. Однако опыт показывает, что обе связи ВеС1 в молекуле ВеСЬ одинаковы. Это может быть лишь в том случае, если оба валентных электрона у атома бериллия идентичны, т. е. имеют одинаковую энергию. Следовательно, в процессе расспаривания электронов энергии их выравниваются, s- и р-орбитали смешиваются — происходит так называемая гибридизация атомных орбиталей. Гибридизация, кроме выравнивания энергий электронов, всегда означает еще и изменение формы электронных облаков. В самом деле, сферическая s-орбиталь смешивается (гибридизуется) с гантелевидной р-орбиталью, вследствие чего образуются две новые гибридные орбитали с одинаковой энергией. Такие орбитали характеризуются грушевидной конфигурацией электронного облака  [c.91]

    Угловую форму молекул некоторых ЭП объясняют /-гибридизацией атомных орбиталей. У атома Ве валентные электроны находятся во втором слое, гяе нет -орбитжлей, поэтому для него х /-гибридизация невозможна. У следующих за бериллием элементов с ростом порядкового номера уменьшается [c.334]

    При образовании максимального числа (Г-связей (и отсутствии П-связей) для всех указанных состояний азота осуществляется хр -гибридизация атомных орбихалей, причем кажлаа неподеленная пара электронов занимает одну гибридную орбиталь. Формирование наряду с (Т-связями Я-связей обусловлено другими типами гибридизации - (одна Т1-связь) или р (две ТГ-связи). [c.397]

    Гибридизация атомных орбиталей обусловливает также и более симметричное распределение электронной плотности в молекуле. Так, при комбинации атомных 5- и р-орбиталей (вр-гибри-дизации) возникают две гибридные орбитали, расположенные относительно друг друга под углом 180° (рис. 11.9). Смешение одной 5- и двух р-орбиталей (яр -гибридизация) приводит к образованию трех гибридных орбиталей, расположенных друг к другу под углом 120° рис. 11.10). Взаимодействие одной 5- и трех р-орбиталей сопровождается яр -гибридизацией, при которой четыре гибридные орбитали симметрично ориентированы в пространстве к четырем вершинам тетраэдра, т. е. расположены под углом 109 1 (рис. 11,11). [c.43]


Смотреть страницы где упоминается термин Гибридизация атомных электронных орбиталей: [c.136]    [c.136]    [c.138]    [c.179]    [c.147]    [c.25]    [c.232]    [c.149]    [c.170]    [c.51]    [c.211]    [c.369]    [c.369]   
Смотреть главы в:

Общая химия 1982 -> Гибридизация атомных электронных орбиталей

Общая химия Издание 22 -> Гибридизация атомных электронных орбиталей




ПОИСК





Смотрите так же термины и статьи:

Атомные гибридизация

Атомные орбитали гибридизация

Гибридизация

Гибридизация орбиталей с орбиталями

Гибридизация электронных орбиталей

Направленность ковалентной связи. Гибридизация атомных электронных орбиталей

Орбиталь атомная

Орбиталь гибридизация

Электронные орбитали



© 2025 chem21.info Реклама на сайте