Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Дипольный момент образование связи

    В ионе аммония каждый атом водорода связан с атомом азота общей электронной парой, одна из которых реализована по донор-но-акцепторному механизму. Важно отметить, что связи Н—N. образованные по различным механизмам, никаких различий в свойствах (например, в энергии связи, дипольном моменте связей и т. д.) не имеют, т. е. независимо от механизма образования возникающие ковалентные связи равноценны. Указанное явление обусловлено тем, что в момент образования связи орбитали 2в- и 2р-электронов атома азота изменяют свою форму. В итоге возникают четыре совершенно одинаковые по форме орбитали. Поскольку форма этих новых орбиталей есть нечто среднее между формами 8- и р-орбиталей, то эти новые орбитали принято называть гибридными, а процесс их возникновения — гибридизацией атомных орбиталей (б).  [c.36]


    ИНДУКЦИОННЫЙ ЭФФЕКТ — взаимное влияние отдельных атомов или радикалов молекулы вследствие различия их электроотрнцательностей, характеризующей способность данного атома или радикала (Л") оттягивать нли отталкивать электрон а-связи, соединяющей X с остальной частью молекулы. В результате И. э. электронная пара а-связи смещается в сторону более электроотрицательного атома, происходит поляризация связи, проявляющаяся в образовании дипольных моментов (Т-связей. И. э. обозначается стрелкой, направленной от менее электроотрицательного атома (донора) к более электроотрицательному (акцептору) И -> С1. Поляризация связи обозначается также частичными зарядами на соответствую-в+ в- [c.108]

    Химикам, конечно, уже давно было известно, что коллективные свойства молекул таких соединений, как парафины, можно достаточно точно выразить через аддитивные свойства связей. К этим свойствам относятся полная энергия (т. е. теплота образования), дипольный момент, длины связей и валентные углы (это тоже коллективные свойства, поскольку они должны быть такими, чтобы полная энергия молекулы была минимальной). Химики интерпретировали эти соотношения как указания на наличие локализованных связей и полагали, что связь между двумя атомами имеет постоянные свойства, не зависящие от их окружения. Некритическое отношение к этому факту привело к большой путанице и потраченным напрасно усилиям, Теоретики пытались объяснить, почему электроны в молекуле должны быть локализованы именно таким образом, а экспериментаторы пытались установить степень локализации. Как правило, они пытались сделать это, изучая одноэлектронные свойства, например распределение неспаренного спина в радикалах. Теперь соверщенно очевидно, что все эти попытки были несостоятельны. Электроны в молекулах не локализованы. Даже в насыщенных молекулах, таких, как парафины, они находятся на МО, охватывающих всю молекулу. Поэтому все попытки обсуждения одноэлектронных свойств в рамках представлений о локализованных связях не обоснованы и могут очень легко ввести в заблуждение. Однако коллективные свойства многих молекул по причинам, которые были указаны, могут быть почти такими, как при локализации валентных электронов в определенных связях. Модель локализованных связей молекул является скорее аналогом, чем описанием действительности. Достоинство этой модели заключается не в том, что она верна, а в том, что она позволяет просто и легко предсказывать свойства молекул, которые пока еще невозможно вычислять с помощью квантовой теории. Хорошим примером подобного приема служит применение в технике аналоговых вычислительных машин. В таком вычислителе можно моделировать напряжения в мосту с помощью набора электрических контуров задаваться вопросом, действительно ли электроны в молекуле локализованы, столь [c.186]


    Идеальная растворимость встречается редко. В большинстве систем природа растворителя значительно влияет на растворимость. Причину отклонений растворимости веществ А и В следует искать прежде всего в различной прочности связей А—А, В—В и А—В. Если силы притяжения почти одинаковы, то растворимость веществ будет велика, что приближает раствор к идеальному. Такое поведение присуще веществам, молекулы которых лишены дипольного момента (неполярны), при растворении в растворителях такого же характера. Если сред.чяя величина сил притяжения А—А и В—В больше, чем сил А—В, то растворимость будет невелика (положительные отклонения от закона Рауля). В этом случае по крайней мере одно из веществ обладает большим дипольным моментом и склонностью к ассоциации. Наконец, если притяжение А—В сильное и оба вещества стремятся к образованию друг с другом сольватов и химических соединений, то растворимость становится особенно большой (отрицательные отклонения от закона Рауля). [c.12]

    Изменение работы выхода электронов при хемосорбции на металлах свидетельствует о возникновении дипольных адсорбционных слоев, а знак изменения работы выхода позволяет судить о направлении дипольного момента хемосорбционной связи. Изменения электропроводности образцов позволяют судить об изменении числа носителей тока, т. е. об участии свободных электронов или дырок (см. гл. IX) в образовании хемосорбционной связи. [c.16]

    При образовании комплексных аммиакатов, аминатов и аквосолей нужно в дополнение к элементам расчета Магнуса считаться с тем обстоятельством, что обладающие перманентным дипольным моментом молекулы тппа NHg, HjO и т. п. в электрическом поле центрального иона такн е испытывают поляризацию, влекущую за собой возникновение дополнительного (индуцированного) дипольного момента. В связи с этим при попытках расчета энергии образования [c.281]

    При образовании радикала из молекулы гидроксиламина происходит изменение гибридизации связей у атома азота. Если, однако, предположить, что различия м.р о в гидроксил а мине и радикале вызваны лишь делокализацией неспаренного электрона, т. е. дипольные моменты а-связи N—О в молекуле и радикале одинаковы, то можно получить в алифатических АР = 0,3, [c.164]

    Необходимо отметить, что увеличение протонной поляризации за счет роста в процессе сорбции длины цепочек из сорбированных молекул и функциональных групп сорбента может иметь место в том случае, если образование таких цепочек повышает вероятность или расстояние перескока протона Н-мос-тика при включении электрического поля. При этом у сорбентов с частотной зависимостью ао особую роль в переносе протонов играют окружающие КВС молекулы и полярные функциональные группы. Ориентация их дипольных моментов, изменение положения отдельных ионов может существенно влиять на характеристики водородной связи и динамику движения протона Н-мостика [665]. [c.248]

    Химическое строение. Различие в химических свойствах используемых для получения мембран полимерных материалов может быть сведено к разнице в полярности молекул и их размеров. Полярность, которая с физической точки зрения характеризует неравномерность распределения электронных облаков, на химическом уровне количественно описывается такими показателями, как плотность заряда, дипольный момент и способность к образованию водородной связи. Хотя ионы и можно классифицировать как крайний случай полярных частиц, наиболее часто на практике их рассматривают отдельно. [c.65]

    Так, предложено проводить выбор разделяющего агента на основе величины дипольного момента, способности образования водородной связи, протонной силы молекулы [26, 27]. [c.286]

    Энергия индукционного взаимодействия, как и ориентационного, убывает пропорционально шестой степени расстояния, но индукционное взаимодействие не зависит от температуры, так как ориентация наведенного диполя не может быть произвольной, она определяется направлением постоянного диполя. Энергия / дд тем значительнее, чем выше поляризуемость неполярной молекулы и дипольный момент полярной молекулы. Индукционное взаимодействие наблюдается при образовании гидратов благородных газов, при растворении полярных веществ в неполярных жидкостях и существенно только для молекул со значительной поляризуемостью. К ним в первую очередь относятся молекулы с сопряженными связями. [c.133]

    Электрофильное замещение в ароматических углеводородах сопровождается переносом электронов от аренов к атакующему электрофилу, что приводит к образованию л-комплексов. Подтверждением их существования является изменение физических и химических свойств системы углубление цвета, рост дипольного момента и т. д. л-Комплексы находятся в равновесии с несколько более прочными о-комплексами, имеющими ковалентную связь. Введение в ядро алкильных заместителей способствует образованию л- и ст-комплексов, так как повышает электронную плотность ядра, увеличивает основность ароматического углеводорода и тем самым способствует скорости его взаимодействия с атакующим электрофильным агентом. Экспериментально установлено, что реакционная способность снижается в ряду [c.8]


    Таким образом, растворяющая способность полярных растворителей зависит не только от величины дипольного момента, но в более значительной мере от ряда других причин, к которым относятся структура неполярного углеводородного радикала молекулы растворителя, возможность или отсутствие возможности образования внутренней или внешней водородной связи, структура растворяемых углеводородов. Это необходимо учитывать при рассмотрении вопроса о действии полярных растворителей в процессах очистки нефтяных фракций. [c.172]

    Например, дипольные моменты таких распространенных в промышленной практике растворителей, как фурфурол и фенол, составляют соответственно 3,57 и 1,70 Д, в то время как по растворяющей способности фурфурол значительно уступает фенолу. Это объясняется тем, что растворяющая способность растворителей зависит также от структуры углеводородного радикала их молекул, которым определяются дисперсионные силы растворителя. Так, с увеличением длины углеводородного радикала в молекулах кетонов растворяющая способность возрастает, хотя дипольный момент даже снижается. Растворители, в молекулах которых при одной и той же функциональной группе содержатся углеводородные радикалы различной химической природы, отличаются друг от друга по растворяющей способности. Углеводородные радикалы по способности повышать растворяющую способность таких растворителей можно расположить в следующий ряд алифатический радикал >бензольное кольцо >тиофеновое кольцо >фурановое кольцо. Растворяющая способность растворителей второй группы снижается с увеличением числа функциональных групп в их молекуле, особенно если эта функциональная группа способна к образованию водородной связи. [c.75]

    ND0/2 Электронная плотность Дипольные моменты, длины связей, валентные углы, силовые константы, ЯМР корреляции Теплоты образования, потенциал ионизации, электронное сродство, спектр [c.358]

    Для двухатомных молекул характер связи между атомами обусловливает и свойства ч амой молекулы. Так, при образовании ковалентно-неполярных связей в молекулах, например типа Х , общее электронное облако симметрично располагается между ядрами обоих атомов, дентры тяжести положительных и отрицательных сил практически совпадают и дипольные моменты таких связей и молекул в целом равны нулю. Такие молекулы называются неполярными. [c.64]

    Органических молекул в основном электронном состоянии (теп-лот образования, дипольных моментов, длин связей, реакционной способности). Полную электронную энергию, вычисленную в рамках теории ССП, удобнее всего выразить при помощи соотношения (5.62). Если полная энергия молекулы Е ПОЛИ ОПрС" делена, следует прибавить к ней член, представляющий отталкивание атомных остовов [см. (10.33)]. [c.232]

    П. Г. Арзаманова и Н. Н. Гурьянова [61 исследовали комплексы п-доноров—аминов, сульфидов н эфиров с йодом и показали наличие прямой зависимости между теплотой образования комплекса и дипольным моментом межмолекулярной связи. Авторы также показали на примере сульфидов, что стерические эффекты играют второстепенную роль, а величины тенлот образования комплексов и дипольные моменты межмолекулярных связей коррелнруются с полярными константами Тафта. [c.13]

    Методом диэлектрометрического титрования определены дипольные моменты ряда комплексов четыреххлористого титана и хлорного олова с серусодержащими соединениями типа К8(СН2), 5К, где п = 1—6 и 10. Эти соединения выбраны в качестве допоров с целью получения октаэдрических комплексов заведомо цис-строе-ния. Исходя из полученных величин дипольных моментов комплексов, определены дипольные моменты межмолекулярных связей Т ...8 и Зп... 3.Установлено, что шестикоординационные комплексы четыреххлористого титана и хлорного олова (состава I 2) представляют собой в растворе смесь ( ыс-4-шранс-изомеров. По дипольным моментам комплексов и их молекулярным весам выяснено, что в зависимости от размера полиметиленовой цепочки (п) у донора могут образоваться как комплексы состава 1 1, так и более сложные ассоциаты (1 1) р. Определены тепловые эффекты реакций комплексообразования и обнаружено наличие прямой пропорциональности между геплотами образования комплексов и их дипольными моментами. Полученные данные показывают, что прочность межмолекулярных связей в основном определяется степенью переноса заряда. Таблиц 2. Иллюстраций 2. Библиографий 7. [c.605]

    При образовании стабильных карбонилов металлов они приобретают электронную оболочку благородного газа, для чего требуется 12 электронов для металлов VI группы, 11 для металлов VII группы и 10 для металлов VIII группы. Поэтому карбонилы Ш и Мо взаимодействуют с 12 я-электронами шести групп СО и образуют октаэдрические молекулы [46]. Карбонил Ке присоединяет 5 групп СО (10 электронов) и образует двуядерный карбонил за счет связи Не—Ке. Молекулу этого карбонила можно построить из двух октаэдров, в каждом из которых в центральном положении находится один атом металла, пять вершин заняты группами СО, а шестая — вторым атомом металла. Молекула карбонила железа с пятью группами СО имеет строение тетрагональной пирамиды. Но известно, что пять эквивалентных гибриди-зованных связей не образуется, юэтому одна из связей Ре—С ослаблена, что подтверждается измерениями дипольного момента. В карбониле кобальта также одна из связей (Со—Со) отлична от других (Со—С). [c.110]

    Поворот амидной группы по цепи приводит к образованию ароматических полиамидов, различающихся направлением дипольного момента амидной связи по отношению к ароматическому ядру, например  [c.8]

    Дипольные моменты ДА-связей в комплексах галогенидов бора с одним и тем же донором, например с пиридином или с триметиламином, увеличиваются в ряду BFg B L ВВгд. Рост акцепторной силы галогенидов бора при переходе от фторида к бромиду был показан также методом ЯМР 565]. Теплоты образования комплексов растут в той же последовательности (см. табл. III.И). Это связано прежде всего с увеличением прочности ДА-связей. Кроме того, разница в теплотах образования комплексов может несколько увеличиваться из-за различия в энергиях перестройки галогенидов бора при комплексообразовании. Оценить величину этого вклада затруднительно, так как в литературе отсутствуют достаточно надежные данные о значениях энергий перестройки (см. гл. V). [c.128]

    Дипольные моменты комплексов АШгд с дифениловым эфиром (7,29 D), фенетолом (7,08 D) и анизолом (7,0 D) близки дипольным моментам комплексов АШгд с алифатическими эфирами — 7,24 D (среднее значение для комплексов типа AlkgO-AlBrg, см. табл. III. 11). Если учесть, что дипольные моменты алифатических и ароматических эфиров близки между собой ((1д = 1,2-ь- 1,3 D) и принять, что дипольные моменты акцепторной части р,д в этих комплексах также практически одинаковы, то из равенства ДМ комплексов можно сделать вывод о равенстве дипольных моментов межмолекулярных связей в комплексах АШгд с алифатическими и ароматическими эфирами и, следовательно, об одинаковой степени переноса заряда от молекулы эфира к молекуле АШгд в этих комплексах. Исходя из линейной зависимости между степенью переноса заряда и теплотой образования комплексов (см. гл. V.10), следовало бы ожидать равенства теплот образования комплексов А1Вгд с алифатическими и ароматическими эфирами. Однако экспе- [c.387]

    Спектроскопически было показано, что сопряжение в ароматическом амине при образовании комплексов с этими кислотами нарушается и дипольные моменты межмолекулярных связей в комплексах кислот с алифатическими и ароматическими аминами близки между собой. Разность между теплотами образования комплексов кислоты с алифатическим и ароматическим аминами характеризует энергию ря-сопряжения в молекуле амина. Так, для диметиланили-на она равна 10,5 и 9,9 ккал/моль при комплексообразовании с трифтор- и трихлоруксусными кислотами [239]. Найденные значения оказались близки к значениям, приведенным для диметилани-лина в табл. V.10, которые были получены при исследовании комплексообразования с галогенидами элементов III группы. [c.391]

    На основании того, что связь между серой и кислородом в сульфоксидах короткая (в среднем 1,45 А), дипольный момент связи небольшой (2,16—2,6 0), а прочность ее сравнительно велика, Саттон и сотр. [31] приняли для сульфоксидов структуру II., Позднее Кэмпер и Уокер повторр о измерили дипольный момент этой связи и нашли, что он равен 3,0 О, что позволило этим авторам также сделать вывод, что связь между 5 и О в сульфоксидах двойная [32]. Однако, как будет подробно показано в гл. 8, посвященной сульфонам, при допущении существования двойной связи 5=0 длина этой связи должна быть меньше, а если считать связь семиполярной, то электрический заряд должен быть больше смещен к атому кислорода, чего нет на самом деле. Даже в окиси триметиламина, которая является типичным примером соединения с семиполярной связью, связь N->0 только на 66% имеет ионный характер. По данным ИК-спектров было найдено, что силовая постоянная связи 5—0 невелика (6,8-10 дин/см) [33] и близка по величине силовой постоянной связи N->-0 в пиридинок-сидах [34]. В среде протонных растворителей кислород сульфоксидов участвует в образовании достаточно прочных водородных связей [33а, 35], а порядок связи 5—0, вычисленный методом МО, невысок [36]. На этом основании некоторые авторы считают, что связь между 5 и О в сульфоксидах является скорее всего семиполярной [37]. Кроме того, в пользу структуры I свидетельствуют -также данные рефракции [38] и парахора [39] связи. Измеренные дипольные моменты ряда диарилсульфоксидов оказались равными 4,02—4,76 О, что также свидетельствует в пользу семиполярного характера 5—О-связи [40]. [c.228]

    Если бы квантово-механическая теория химических связей была вполне совершенной, она должна была бы объяснить все отличия, которые имеются между различными связями. Ниже мы рассмотрим некоторые из попыток, которые делались в этом направлении укажем также на некоторые трудности, с которыми теория должна столкнуться в этих вопросах. Но и до этого следует указать, что во многих случаях некоторые из этих свойств с трудом поддаются определению. Так, например, во всех молекулах, кроме двухатомных, на энергию диссоциации связи сильно влияют атомы, находящиеся рядом с этой связьнэ. Таким образом, говоря об энергии связи С—С в этане, необходимо точно охарактеризовать состояние метильных групп после разрыва связи. Термохимическое измерение теплоты диссоциации этана на два метильных радикала дает значение энергии, необходимой для образования метильных радикалов, в их наиболее устойчивом состоянии, которое, по-видимому, является плоским. Но с теоретической точки зрения более целесообразно рассматривать энергию, требуемую для разрыва связи С —С без изменения длин связей С — Н и валентных углов в двух образую-. щихся метильных группах. Эти две энергии, вероятно, сильно отличаются одна от другой. Аналогично силовая постоянная связи в многоатомной молекуле определяется при анализе нормальных колебаний молекулы, но оказывается (за исключением, конечно, случая двухатомных молекул), что имеются взаимодействия между деформациями отдельных связей, которыми шкак нельзя пренебречь, что усложняет оценку силовой постоянной данной связи. На дипольный момент связи в многоатомной молекуле влияют поляризационные эффекты и другие взаимодействия с остальными связями, [юэтому выделить собственный), дипольный момент данной связи также уюжет быть затруднительно. Таким образом, уже перед тем, как приступить к созданию теории изменения химических связей между различными атомами, мы наталкиваемся на трудности в однозначной формулировке ( пактов, подлежащих объяснению. [c.366]

    Дипольные моменты отдельных связей и групп и их векторное сложение в мно1оатомных молекулах. Д. м. многоатомной молекулы является векторной суммой всех Д. м. отдельных химич. связей, имеющихся в структуре молекулы (правило векторной аддитивности Д. м. связей). Большинство Д. м. связей, приводимых в литературе, вычислено не теоретически (абс. расчет здесь очень труден), а путем сопоставления опытных Д. м. ряда молекул. Векторные суммы Д. м. связей хорошо совпадают с опытными Д. м. в тех случаях, когда взаимное влияние атомов, связей и групп проявляется достаточно слабо. В этих случаях имеет место аддитивность Д. м. отдельных связей и, следовательно, оправдано приписывание каждому виду химич. связи определенного вектора Д. м.," сохраняющего приближенное постоянство в разных соединениях. Здесь имеется аналогия с вычислением молекулярной рефракции и теплоты образования таких молекул в виде суммы нек-рых постоянных инкрементов, приписанных отдельным видам связей. В молекулах с сильным взаимным влиянием наблюдаются отклонения от правила векторной аддитивности, если для Д. м. связей берутся средние значения, характерные для связей в молекулах аддитивного типа. Это используется для суждения о дополнительной поляризации в подобных молекулах за счет т. наз, мезомерных сдвигов электронов, о стери-ческом влиянии и других явлениях. [c.567]

    Растворяющая способность растворителя зависит л от способности его молекул к образованию водородной связижТак, значительная разница между растворяющей способностью растворителей с одинаковым неполярным углеводородным радикалом (фенола, анилина, нитробензола) объясняется не только различным дипольным моментам, но и разной способностью молекул этих растворителей к ассоциации. Фенол и анилин, имеющие в своем составе электроотрицательные атомы (О, М) и связанные с ними водородные атомы, сПосо1бные образовывать водородную связь, при < бычных температурах в значительной мере ассоциированы. Э о приводит к снижению их растворяющей опособности по сравнению с нитробензолом. Ввиду отсутствия атома, способного образовать водородную связь, можно ожидать слабой ассоциации молекул нитробензола. В результате при наличии высокого ди- [c.55]

    С другой стороны, химический состав среды и ее полярность определяют, будут ли и в какой степени растворяться в ней конкретные ПАВ, что зависит от ван-дер-ваальсовой составляющей энергии связи этого ПАВ со средой. Чем эта энергия связи выше и чем растворимость ПАВ лучше, тем хуже его поверхностные (в частности, защитные и противокоррозионные) свойства. Молекулы среды способны вступать в межмолекулярное взаимодействие с молекулами ПАВ с образованием Н-ком-плексов, я-комплексов и комплексов с переносом заряда. Тем самым молекулы ПАВ поляризуются, увеличивается их дипольный момент и относительная степень ионности. Все это приводит к возрастанию общего энергетического взаимодействия. [c.207]

    Необходимо обратить внимание, что появление дипольного момента у молекул, возможность образования водородной связи или сильное взаимодействие молекул газа в адсорбированном слое при больших концентрациях изменяет адсорбционный потенциал и как следствие, коэффиицент разделения [2]. [c.51]

    И. Вы знаете, что молекулой называется наименьшая частица веш,ества, сохраняюш,ая свойства всего вещества в целом. Какие из нижеприведенных свойств веществ можно использовать для подтверждения формулировки плотность, цвет, энергия связи, дипольный момент, масса, твердость, угол между связями, энтальпия образования из атомов, энтропия, растворимость, вкус, цвет, межъядерные расстояния, скорость движения, размер, кинетическая энергия, температура, давление, магнитный момент. Если вы считаете, что предложенное выше определение молекулы неточно или неправильно, дайте свое собственное определение. [c.16]

    Донорные свойства непредельной связи и акцепторные свой-ства атакующей положительной частицы способствуют образованию я-комплексов, или комплексов с переносом заряда, что приводит к повышению дипольного момента либо появлению новых полос, определяемых УФ-спектроскопией. я-Комплекс способен распадаться на исходные компоненты, так как энергия связи в нем составляет лишь несколько кДж/моль и характеризуется значительно большими межатомными расстояниями, чем в а-комплексе. Образование комплексов зависит от наличия в реакционной смеси промоторов типа НС1 и Н2О, поскольку чистые олефины при контакте с безводными металлгалогенидами [c.64]

    Несколько иное явление наблюдается при обводнении или при поглощении влаги из воздуха нефтепродуктами. Молекулы воды имеют малый молеку шрный объем и большой дипольный момент. Эти молекулы ассоциируются с другими молекулами воды вследствие их способности к образованию водородных связей. Все углеводороды, входящие в состав нефтепродуктов, имеют значительно больший молекулярный [c.31]

    Растворимость углеводородов в полярных растворителях зависит от способности их молекул поляризоваться, что связано со структурными особенностями молеку л углеводородов. Вследствие малой поляризуемости молекул твердых углеводородов индуцированные дипольные моменты этих соединений евелики, поэтому растворение твердых углеводородов в полярных растворителях происходит в основном под действи м дисперсионных сил. Растворимость остальных компонентов масляных фракций является результатом индукционного и ориентационного взаимодействий, причем действие полярных сил настолько велико, что даже при низких температурах эти компоненты остаются в растворенном состоянии. При понижении температуры влияние дисперсионных сил постепенно ослабевает, в то время как влияние полярных сил усиливается в результате при достаточно низких температурах твердые углеводороды выделяются из раствора и благодаря наличию длинных парафиновых цепей сближаются с образованием кристаллов. [c.156]

    Образование комплексного соединения ароматических углево- -дородов с ионами, находящимися на поверхности адсорбента, так же как и при их растворении в избирательном растворителе, связано с возникновением в электронейтральной молекуле-под влиянием электростатического поля адсорбента дипольного момента. Адсорбируемость так же зависит от строения ароматических углеводородов, как и растворимость. Поэтому, чем меньше экраниро-. ваны ароматические ядра нафтеновыми кольцами или боковыми парафиновыми цепями, тем легче в них возникает индуцированный дипольный момент и тем эффективней адсорбция таких углеводородов полярными адсорбентами. Чем больше колец в молекуле ароматических углеводородов, тем прочней они адсорбиру- -ются. Парафиновые и нафтеновые углеводороды слабо адсорбируются полярными адсорбентами. [c.237]


Смотреть страницы где упоминается термин Дипольный момент образование связи: [c.205]    [c.116]    [c.124]    [c.153]    [c.125]    [c.389]    [c.397]    [c.108]    [c.60]    [c.72]    [c.172]    [c.153]   
Водородная связь (1964) -- [ c.21 , c.22 , c.200 , c.201 ]




ПОИСК





Смотрите так же термины и статьи:

Дипольный момент

Дипольный момент в зависимости от образования водородной связи

Эмпирический электростатический подход. Связь между энтальпиями образования и дипольными моментами



© 2025 chem21.info Реклама на сайте