Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Открытие радиоактивности и ядерных реакций

    Первая искусственно осуществленная ядерная реакция была реализована супругами Ирен и Фредериком Жолио-Кюри 1з А1(а, я)15 Р, она привела к открытию искусственной радиоактивности. Эта реакция происходила при облучении образца металлического алюминия а-частицами (тип ядерной реакции а, л). В результате образовался искусственный радиоактивный изотоп фосфора и происходило выбрасывание нейтронов. Другая ядерная реакция того же типа 5 °В(а, га)7 Ы, осуществленная ими же, — это облучение бора а-частицами, при котором образовался радиоактивный изотоп азота и тоже выделялись нейтроны (тип а, п). [c.219]


    Как до 1900 г. считалось, что атом в соответствии с его определением является неделимым, так и до 1919 г. атомное ядро тоже считалось неделимым. Открытие ядерного распада при исследовании радиоактивности поставило перед учеными новую задачу нельзя ли искусственным путем разделить протоны в ядрах. Сомнения, существовавшие по этому поводу, были обусловлены тем, что силы, связывающие протоны, были чрезвычайно велики. Но в 1919 г. Э. Резерфорду удалось осуществить первую ядерную реакцию. Резерфорд бомбардировал газообразный азот быстрыми а-частицами (ядрами гелия), в результате чего ему удалось превратить атомы азота в атомы кислорода. [c.109]

    Искусственная радиоактивность. Ядерные реакции. В 1934 г. Ирен Кюри и Фредерик Жолио-Кюри обнаружили, что некоторые легкие элементы — бор, магний, алюминий — при бомбардировке их а-частицами испускают позитроны. Они же установили, что если убрать источник а-частиц, то испускание позитронов прекращается не сразу, а продолжается еще некоторое время. Это значит, что при бомбардировке а-частицами образуются какие-то радиоактивные атомы, обладающие определенной продолжительностью жизни, но испускающие не а-частицы и не электроны, к позитроны, Таким образом была открыта искусственная радиоактивность. [c.105]

    В настоящее время радиоактивные изотопы могут быть получены для любых химических элементов периодической системы за счет соответствующих ядерных реакций. Явление искусственной радио-акти (ности открыто в 1934 г. Ирен и Фредериком Жолио-Кюри. [c.659]

    Ядерная химия занимается изучением реакций, при которых происходит изменение атомных ядер. Эта область науки начала развиваться после открытия радиоактивности и опубликования работ Пьера и Марии Кюри о химической природе радиоактивных веществ. Уже через несколько десятилетий (на протяжении которых природная радиоактивность была весьма тщательно изучена) в результате открытия искусственной радиоактивности произошел огромный скачок в развитии этого направления науки. [c.607]

    Методы, основанные на ядерных реакциях—радиоактивационный, или (его главная часть)—нейтронно-активационный метод анализа. Нейтронно-активационный метод возник после открытия атомной энергии и создания действующих атомных реакторов. Принцип метода заключается в следующем. Анализируемый материал подвергают действию нейтронного излучения в атомном реакторе или посредством нейтронного генератора. При взаимодействии нейтронов с ядрами элементов происходят ядерные реакции и образуются радиоактивные изотопы всех элементов, входящих в состав пробы. Затем пробу переводят в раствор и разделяют элементы химическими методами. Завершающим этапом определения является измерение интенсивности радиоактивного излучения каждого элемента пробы. [c.32]


    Использование рассмотренных в настоящем параграфе методов воздействия на атомные ядра дает возможность искусственно осуществлять превращения всех элементов. Однако, в отличие от естественных радиоактивных превращений, описанные выше ядерные реакции протекают лишь до тех пор, пока имеет место внешнее воздействие. Мост между теми и другими процессами был перекинут открытием искусственной радиоактивности. [c.517]

    Честь открытия (1934 г.) явления самопроизвольного вторичного превращения атомных ядер, образующихся в результате ядерных реакций, принадлежит супругам Кюри-Жолио (Ирен Кюри-Жолио и Фредерик Жолио-Кюри). Это явление получило название искусственной радиоактивности. Примером таких реакций может служить следующая  [c.415]

    Изучение явления радиоактивности первоначально привело к предположению, что ядра различных атомов построены из протонов и электронов. Эта гипотеза долгое время была общепризнанной. Однако последующее изучение ядерных реакций, открытие нейтронов Чедвиком и выявившаяся возможность выделения нейтронов из любых атомных ядер (кроме протона) привели к отказу от ранее принятой гипотезы. Д. Д. Иваненко и Е. Н. Гапон (1932) и Гейзенберг (в том же году) высказали и обосновали положение, что атомные ядра состоят из протонов и нейтронов, и предложили протонно-нейтронную теорию атомных ядер. [c.51]

    Открытое А. Беккерелем явление радиоактивности было первым примером ядерных реакций — превращений ядер одного элемента в ядра другого элемента. Сейчас известно очень много ядерных реакций все они относятся к физическим явлениям и поэтому рассматриваются в курсе физики. [c.25]

    Открытие ядерных реакций и искусственной радиоактивности имело огромное значение для науки и техники. Появилась возможность искусственного синтеза элементов. Впервые неизвестный ранее элемент технеций был синтезирован в 1937 г. по уравнению реакции [c.36]

    Начало четвертого, необычайно бурного этапа развития радиохимии совпадает с открытием искусственной радиоактивности супругами Жолио-Кюри, сделанным в 1934 г. В этот период устанавливается возможность искусственного получения радиоактивных изотопов почти всех известных стабильных элементов, открываются ядерные реакции, имеющие исключительно важное значение для получения радиоактивных изотопов и синтеза новых элементов, в том числе и трансурановых. [c.14]

    Превращение химических элементов осуществляется в результате ядерных реакций. Первым шагом в научном решении проблемы превращения элементов было открытие А. Беккерелем в 1896 г. радиоактивности урана. Объяснение радиоактивности как следствия расщепления ядер (Э. Резерфорд, Ф. Содди, 1903) показывает, что химические элементы не являются вечными и неизменными, а могут превращаться друг в друга. С этого момента получила твердые научные основы и задача искусственного превращения элементов. Закономерности превращения ядер химических элементов изучает ядерная химия. [c.9]

    Радиоактивные изотопы элемента № 61 — прометия—выделены из продуктов деления урана и плутония, а также получены по различным ядерным реакциям из изотопов Рг, N(1, 5т и Ей. Вопрос о существовании Рт в природе остается открытым. [c.7]

    Изучение явления радиоактивности первоначально привело к предположению, что ядра различных атомов построены из протонов и электронов. Однако последующее развитие наших знаний о ядре, изучение ядерных реакций, открытие нейтронов и выделение их из состава атомных ядер в различных реакциях привело к отказу от этой гипотезы и к установлению общепринятой теперь протонно-нейтронной теории состава атомных ядер. [c.417]

    Однако широкого распространения метод радиоактивных индикаторов не получил из-за ограниченных возможностей выбора изотопов и вследствие отсутствия соответствующих источников естественных радиоактивных изотопов. Это препятствие было снято благодаря открытию искусственной радиоактивности супругами И. и Ф. Жолио-Кюри, осуществлением получения многих радиоактивных изотопов по ядерным реакциям на циклотронах и, наконец, открытием деления тяжелых ядер. [c.12]

    Радиоактивность урана представляет собой свойство, уже давно хорошо изученное и подробно описанное в литературе. Другое необычайное свойство урана, а именно его способность к делению ядра с выделением громадного количества энергии, было обнаружено лишь после открытия нейтронов, которое относится к, 1930—1932 гг. Нейтрон представляет собой частицу, по массе почти равную массе протона, но лишенную заряда. Поэтому нейтроны не отталкиваются частицами, несущими заряд, и могут проникать в ядро атома, представляя собой весьма мощный тип снаряда для осуществления ядерных реакций, т. е. реакций, связанных с изменениями в ядре атома (как известно, в обычных химических реакциях участвуют только наружные электроны, ядро же атома остается неизменным). Характер ядерной реакции зависит от скорости нейтрона взаимодействовать же с нейтронами по тому или иному типу реакции могут ядра всех элементов, за исключением гелия, обладающего исключительно устойчивым ядром. В 1933 г. было установлено, что нейтроны могут захватываться ядром. При этом ядро претерпевает изменения, которые можно изобразить схемой  [c.372]


    В первой части книги рассматриваются следующие проблемы основные закономерности реакций изотопного обмена в гомогенных и гетерогенных системах, применение метода радиоактивных индикаторов для изучения кинетики химических реакций, структуры молекул, процессов самодиффузии и измерения величины поверхности. Рассмотрены различные методы анализа, основанные на использовании радиоактивности (анализ по естественной радиоактивности, активационный анализ и др.). Значительное место уделено свойствам радиоактивных индикаторов без носителей и их применению. Описаны работы по открытию и изучению свойств новых элементов, при которых использовались радиометрические методы. Рассмотрен значительный круг химических явлений, сопровождающих ядерные реакции и химические процессы, происходящие под действием атомов отдачи (химия горячих атомов). Собран материал по эманационным методам. [c.3]

    С помощью ядерных реакций образуются отдельные радиоактивные изотопы и семейства радиоактивных изотопов с большим или меньшим числом генетически связанных членов. Одним из таких семейств радиоактивных изотопов является недавно открытое семейство нептуния (рис. 135). Искусственные ядерные реакции осуществляются путем облучения мишени, содержащей исходный для реакции изотоп, нейтронами, а-частицами, протонами, дейтронами, фотонами или ионами более тяжелых атомов (тритий, углерод, азот и др.). [c.213]

    После открытия искусственной радиоактивности метод инертных спутников получил еще более широкое применение — в качестве инертных соосадителей начали использовать соединения устойчивых изотопов тех же элементов. Если, например, в сероуглероде произошла ядерная реакция с образованием фосфора [c.259]

    ОТКРЫТИЕ РАДИОАКТИВНОСТИ И ЯДЕРНЫХ РЕАКЦИЙ [c.18]

    Первое искусственное осуществление ядерной реакции (Резерфорд, 1919) положило начало новому методу изучения атомного ядра. Открытие нейтронов (Чэдвик, 1932) привело к возникновению протонно-нейтронной теории атомных ядер, предложенной сначала Д. Д. Иваненко и Е, Н. Гапоном (1932) н в том же году Гейзенбергом. Вскоре Фредерик и Ирен Жолио-Кюри (1934) открыли явление искусственной радиоактивности В 1938 г. Хан и Штрассман осуществили деление атомного ядра урана, а в 1940 г. К. Д. Петржак и Г. Н. Флеров открыли явление самопроизвольного деления атомных ядер. В 40-х годах была осуществлена цепная ядерная реакция (Ферми) и вскоре был открыт новый вид ядерных превращений — термоядерные реакции. Дальнейшее развитие ядерной физики сделало возможным использование ядерной энергии. Позднее эти явления стали использовать при химических и биологических исследованиях. В настоящее время разрабатывается проблема осуществления управляемых термоядерных реакций. [c.19]

    Эффективные сечения ядерных реакций. Все члены естественных радиоактивных рядов являются изотопами элементов от 81 до 92, но последняя часть периодической системы не обязательно представляет для радиохимика наибольший интерес. Правда, в природе были найдены также и отдельные изолированные радиоэлементы (табл. 3), однако их удельные активности малы и, кроме того, всегда одинаковы (не зависят от происхождения материала) поэтому пока не представляется возможным использовать эти элементы в качестве индикаторов. В связи с этим введение в практику свыше тысячи активных изотопов [119] в течение первых пятнадцати лет со времени открытия искусственной радиоактивности (Жолио и Кюри [80]) безмерно расширило горизонты радиохимии. Появление продуктов деления дало развитию радиохимии новый толчок [126], а глубокое расщепление ядер частицами сверхвысокой энергии [118] обещает дальнейший прогресс. Теперь доступны меченые атомы для большинства элементов. [c.34]

    Т. о., ими была открыта искусственная Р., являющаяся сейчас важнейшей областью Р. пз общего числа свыше 1500 известных ныне радиоактивных изотопов более 1200 получено искусственным путем, в результате ядерных реакций, осуществляемых посредством облучения различных изотопов на всевозможных ускорителях и ядерных реакторах. Р., наблюдающуюся у существующих в природных условиях изотонов, стали после открытия искусственной Р. называть природной, или естественной, Р. Принципиальной разницы между природной и искусственной Р. не существует, ибо свойства изотопа не зависят от способа его образования, и радиоактивный изотоп, полученный искусственным путем, ничем не отличается от такого же самого природного изотопа. [c.227]

    По мере открытия новых ядерных реакций становилось очевидным, что явление, которое пытается описать закон радиоактивных смещений, гораздо шире, чем возможности нынешней формулировки закона. Последний не учитывает реакции испускания (захвата) нейтрона, 2р - и 2Р -распада, двухпротонные реакции испускания и захвата, спонтанное деление [c.103]

    Второе издание существенно отличается от первого. Переработке или дополнению подвергались почти все главы книги, В главу I включены новые параграфы Радиоактивность. Ядерные реакции , История открытия перр10дического закона и Значение периодического закспа . Глава II дополнена параграфами Основные характеристики молекул , Описание химической связи в методе молекуляр-иых орбиталей (МО) , Межмолекулярное взаимодействие и Металлическая связь . [c.4]

    Из изотопов данных элементов отметим " Вг и радиоактивные изотопы иода. На изотопах Вг И. В. Курчатовым было открыто явление ядерной изомерии. Ядерными изомерами называются изотопы с одинаковым зарядом ядра, одинаковым массовым числом, одинаковым типом радиоактивного излучения, но с различными периодами полураспада. Энергетически ядра-изомеры неравноценны. Одно из ядер находится в нормальном энергетическом состоянии, а другое в возбужденном. Возбужденное ядро брома, прежде чем излучать электрон, излучает га ма-квант. Радиоактивный изотоп иода зЧ (Т.,, 8,08 дней) применяе в медицине при лечении заболе- ваний, связанных с нарушением нормальных функций щитовидной железы. Астат получается ядерной реакцией нзВ + о = - At + 3[о 1. Изотоп с массовым числом 210 наиболее устойчивый Ti/, = 8,3 ч. [c.597]

    Однако получающиеся при реакции (5.1) изотопы не являются радиоактивными. Поэтому открытие Резерфордом возможности искусственных превращений атомных ядер следует считать предтечей открытия искусственной радиоактивности. Разработка первых способов получения искусственных радиоактивных изотопов связайй с именами Ирэн и Фредерика Жолио-Кюри. В 1934 г. эти исследователи обнаружили, что при бомбардировке а-частицами бора, алюминия и магния возникают какие-то ядра, которые обладают -активностью. Тщательное исследование этого явления показало, что при столкновении а-частиц с ядрами атомов обстреливаемых элементов происходит ядерная реакция, как, например, [c.75]

    Трансурановые элементы (заурановые элементы) — радиоактивные химические элементы, расположенные вслед за ураном в периодической системе Д. И. Менделеева. Атомные номера 93. Большинство известных трансурановых элементов (93—103) принадлежит к числу актиноидов. Все изотопы их имеют период полураспада значительно меньший, чем возраст Земли. Поэтому Т. э. практически отсутствуют в природе и получаются искусственно посредством различных ядерных реакций. Первый из трансурановых элементов нептуний Np (п. н. 93) был получен в 1940 г. бомбардировкой урана нейтронами. За ним последовало открытие плутония (Ри, п. н. 94), америция (Ага, п. н. 95), кюрия (Сга, п. н. 96), берклия (Вк, п. н. 97), калифорния( f, п. н. 98), эйнштейния (Es, п. н. 99), фермия (Рш, п.н. 100), менделевия (Md, п. н. 101), нобелия (No, п. н. 102), лоуренсия (Lr, п. н. 103) и курчатовия (Ки, п. н. 104). Так же получены Т. э.с порядковым номером 105— 106. Более или менее полно изучены химические свойства Т. э. Криста.члографи-ческне исследования, изучение спектров поглощения растворов солей, магнитных свойств ионов и других свойств Т. э. показали, что элементы с п. н. 93—103 — аналоги лантаноидов. Из всех Т. э. наибольшее применение нашел Ри как ядерное горючее. [c.138]

    О составе атомных ядер и энергии их образования. Изучение явления радиоактивности первоначально привело к предположению, что ядра различных атомов построены из протонов и электронов. Эта гипотеза долгое время была общепризнанной. Однако последующее изучение ядерных реакций, открытие нейтронов Чедвиком и выявившаяся возможность выделения нейтронов из любых атомных ядер (кроме протона) привели к отказу от ранее принятой гипотезы. Д. Д. Иваненко и Е.Н. Га-пон (1932) и Гейзенберг (в том же году) высказали и обосновали положение, что атомные ядра состоят 8 88 90 92 9 из протонов и нейтронов, и предложили протонно-нейтронную теорию Рис. 8. Энергетические уровни 5/ атомных ядер и 6 -подуровией электронов в ато- [c.51]

    Другими важнейшими следствиями работ по Р. явились открытие Резерфордом в 1911 в опытах по рассеянию а-частиц металлич. фольгами существования ядра атомного и осуществление им же в 1919 первого искусственного превращения химич. элементов (азота — в кислород) под действием а-частиц, испускаемых радиоактивными элементами. Уравнение этой ядерной реакции в общепринятой краткой символике записывается в виде N (a, p)Oi . Вначале обозначается химич. символ и массовое число бомбардируемого изотопа, в конце — химич. символ и массовое число изотопа — продукта реакции. В скобках записываются символы сперва бомбардирующей частицы, а затем — частицы (или частиц), вылетающих в результате реакции, напр, а-частица (Не ), р — протон (Н1), d — дейтрон (Н ), н — нейтрон, Y-KBaHT. Бомбардируя а-частицами бериллий, Д. Чадвик в 1932 открыл нейтрон Ве (а, п) С . В 1934 супруги И. и Ф. Жолио-Кюри, исследуя результаты омбар- [c.227]

    Астат-211. Альфа-излучатель At (Т[/2 = 7,2 ч ЭЗ 58,3%, а 41,7% основные 7-кванты с = 92,4 кэВ (2,3%) 687,0 кэВ (0,25%) Еа = = 5,866 МэВ), изотоп пятого, самого тяжёлого элемента в группе галогенов, относится к числу немногих нейтронодефицитных изотопов, применяемых в радиотерапии. У астата нет стабильных изотопов, а радиоактивные изотопы имеют короткие периоды полураспада (самый большой Т1/2 = 8,3 ч у At). Поэтому исследование химических свойств этого элемента происходит на уровне ультрамикроколичеств, что требует исключительной аккуратности в создании определённых экспериментальных условий и их стабильности во времени с учётом того факта, что астат имеет несколько устойчивых валентных состояний, как аналог йода. Всё это привело исследователей к открытию целого ряда новых свойств элемента, на основе которых были разработаны методы выделения ультрамикроколичеств At из сложных смесей продуктов ядерных реакций и синтеза ряда неорганических и органических соединений астата [19]. В последнее время было показано, что перспективными для применения в радиотерапии по своим свойствам могут быть такие препараты с At как метиленовый голубой, моноклональные антитела (МКАТ), коллоидный металлический Те (размер зёрен 3-5 мкм) с сорбированным At [19, 20]. [c.356]

    Революция в физике, которая произошла на рубеже XIX и XX веков, в частности благодаря открытию радиоактивности (Беккерель, 1896), разработке квантовой теории Планк, 1900) и теории относительности Эйнитгейн, 1905), привела к открытию ядерных реакций, при которых освобождается в миллионы раз больше энергии, чем при химических. В ходе ядерных реакций (радиоактивного распада) атомные ядра (неделимые с точки зрения классической физики) одних радиоактивных элементов превращаются в атомные ядра других. В природе происходит естественный радиоактивный распад ряда химических элементов. В лабораторных условиях в настоящее время возможно искусственное превращение атомных ядер всех химических элементов. Эти процессы совершаются при бомбардировке атомных ядер различных элементов высокоэнергетическими ядерными частицами. [c.45]

    Наиболее важной из всех индуцированных ядерных реакций, при которых продукт реакции представляет собой изотоп элемента мишени, является, повидимому, реакция (я, y). Вскоре после открытия нейтрона Ферми и его сотруд- ики [А9] показали, что многие элементы способны захватывать нейтроны, и при этом часто образуются радиоактивные изотопы. Эти исследователи обнаружили также, что вероятность захвата во многих случаях сильно возрастает, если скорость нейтронов уменьшается до тепловых скоростей в результате последовательных столкновений с атомами очень легких элементов (например, с атомами, входящими в состав парафина), прежде чем они встречаются с атомами, захватывающими нейтроны. Эффект испускания - -излучения при захвате нейтронов был впервые обнаружен Ли [L12], который наблюдал f-излучение, сопровождающее процесс захвата нейтронов водородом с образованием дейтерия. [c.199]

    ПОЗИТРОН — элементарная частица, античастица по отношению к электрону (положительный электрон). Обозначается символом е +. Имеет массу и спин такие же, как у электрона, а заряд и магнитный момент, отличающиеся только но знаку. Аннигилирует с электроном, давая два кванта электромагнитного излучения е + - -е 2у. Впервые П. был экспериментально обнаружен в космич. лучах (1932) К. Андерсоном, а затем получен искусственно по реакции рождения пар, обратной аннигиляции. П. образуется часто при различных ядерных реакциях, а также при радиоактивном распаде многих ядер и нек-рых элементарных частиц. Открытие П. как первой из экспериментально обиаруженных античастиц явилось триумфом релятивистской квантово-механич. теории П. Дирака, предсказавшей (1929) их существование. Так же, как и электрон, П. стабилен, т. е. не подвергается самопроизвольному распаду, однако он не может долго существовать из-за аннигиляции с электронами, имеющимися в любом веществе. Атомы гипотетич. антивеществ, ядра к-рых образованы антипротонами и антинейтронами, должны иметь в своих оболочках П. Строение нозитронных оболочек должно обусловливать химич. свойства антивеществ так же, как электроны обусловливают химич. свойства обычных веществ (см. Элементарные частицы). [c.58]

    Третий этан развития Р. начался в 1934, когда Ирен и Фредерик Жолио-Кюри впервые получили искусственные радиоактивные изотопы. Это открытие чрезвычайно расширило число элементов, доступных исследованию радиохимич. методами, распространив область их применимости на радиоактивные изотопы практически всех известных химич. элементов. Широкое нрименение нашел метод радиоактивиых индикаторов, предложенный ранее Г. Хевеши и Ф. Панетом (1926). Возникла новая область Р.— изучение продуктов ядерных реакций и химич. последствий радиоактивных превращений. Четвертый этап может быть назван этаном технологии искусственных изотопов. Его начало относится к 1944, когда в промышленном масштабе была осуществлена цепная реакция деления, открытая ранее радиохимиками О. Ганом и Ф. Штрассманом (1939). Радиохимич. методы позволили изучить ядерные реакции, происходящие в реакторе, и разработать методы концентрирования и получения в чистом виде многих продуктов облучения ядерного горючего, в частности трансурановых элементов. В ряде стран — США, СССР, Англии, Франции—были разработаны методы промышленного радиохимич. произ-ва искусственных радиоактивных изотопов, в т. ч. наиболее важного из них — изотона плутония с массовым числом 239. Путем облучения в реакторах стали получать радиоактивные изотопы многих элементов — тритий, кобальт-60 и пр. Большие перспективы открылись перед хемоядерным синтезом — методом непосредственного химич. воздействия ядерных частиц и осколков деления на вещество. [c.245]


Смотреть страницы где упоминается термин Открытие радиоактивности и ядерных реакций: [c.401]    [c.191]    [c.16]    [c.224]    [c.101]    [c.175]   
Смотреть главы в:

Неорганическая химия -> Открытие радиоактивности и ядерных реакций




ПОИСК





Смотрите так же термины и статьи:

Радиоактивность, открытие

Радиоактивность. Ядерные реакции

Реакции открытия

Реакции ядерные



© 2025 chem21.info Реклама на сайте