Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Растворимость некоторых солей и оснований в воде при температурах

    Растворимость некоторых солей и оснований в воде при температурах О, 20, 50 и 100°С [c.342]

    Кривые растворимости некоторых солей изображены на рис. 8, а в табл. IX (см. приложение) приведена растворимость некоторых солей и оснований в воде при различных температурах. [c.55]

    Метил-4,6-динитрофенол представляет собой кристаллическое вещество желтого цвета с т. пл. 86,4 Х. При 25 в воде растворяется около 0,03%, в спирте — 3,69%. Давление пара при 25 °С— 10,5-10-5 рг. ст. С едкими щелочами, аммиаком и некоторыми аминами 2-метил-4,6-динитрофенол образует хорошо растворимые в воде соли. Температура плавления некоторых солей 2-метил-4,6-динитрофенола с органическими основаниями приведена в табл. 10 [207]. [c.99]


    В табл. 31 приведены температуры плавления и растворимость в воде некоторых солей 2,4-Д с различными основаниями [26, 30, 116, 230, 231]. [c.311]

    Величина Йг — Я может отличаться от дифференциальной теплоты в ненасыщенных растворах не только по величине, ко и по знаку. ПЬэтому судить на основании экспериментальных данных о знаке dNtldT следует осторожно . Известно, что растворимость ряда веществ, растворяющихся в чистом растворителе с выделением теплоты (примером могут служить некоторые соли в воде), увеличивается с ростом температуры. Противоречие принципу смещения равновесия здесь лишь кажущееся его применение ограничено насыщенными растворами (равновесная система ), а для насыщенного раствора значения теплоты растворения для этих систем положительны. [c.253]

    Поэтому судить на основании экспериментальных данных о знаке dNJdT следует осторожно. Известно, что растворимость ряда веществ, растворяющихся в чистом растворителе с выделением теплоты (примером могут служить некоторые соли в воде), увеличивается с температурой. Противоречие принципу смещения равновесия здесь лишь кажущееся его применение ограничено насыщенными растворами (равновесная система ), а для насыщенного раствора значения теплоты растворения положительны. [c.264]

    Ниридин - единственный ароматический растворитель, пригодный для электрохимических целей. Он, безусловно, представляет собой достаточно сильное основание, которое способно образовывать с ионами металлов льюисовские кислоты - основные аддитивные соединения. Хотя пиридин имеет довольно низкую диэлектрическую постоянную (12), он весьма универсальный растворитель. В нем растворимы многие соли, причем их растворы обладают низким сопротивлением. Ниридин находится в жидком состоянии в области температур от -41 до +115°С и характеризуется умеренно низким давлением паров при комнатной температуре. Но вязкости он подобен воде и растворяется в ней в любых пропорциях. Ниридин использовался в качестве среды для электролитического окисления и восстановления неорганических и органических соединений на ртутном, платиновом и графитовом электродах. Из пиридиновых растворов были электроосаждены следующие элементы Ы, Ка, К, Си, Ag, Mg, Са, Ва, 2п, РЬ и Ге [1]. Имеются некоторые указания на образование растворов электронов в пиридине [2.  [c.27]


    Возможным методом, обеопечивающим очистку сточных вод от сероуглерода и сероводорода, содержащихся в связанном виде в вискозе, является разрабатываемый ВНИИВом термолиз вискозных стоков, основанный ка способности тиокарбоновых солей разлагаться при температуре около 120° и давлении 3—4 атм. При обработке вискозной сточной воды в течение 2—3 мин вискоза разлагается с образованием нерастворимого осадка целлюлозы и растворимых соединений соды, сернистого натрия и некоторых других. Экономические расчеты показывают, что в связи с большими затратами тепла использование термолизного метода нерентабельно для очистки больших количеств сточных вод. Он может найти применение при небольшом объеме высококонцентрирован-яых стоков. [c.83]

    Большая часть алкалоидов — кристаллические вещества с определенной температурой плавления, реже встречаются жидкие алкалоиды, например никотин, анабазин, обладающие летучестью. В виде свободных оснований алкалоиды обычно мало растворимы в воде, но легко растворяются в органических растворителях (спирт, эфир, хлороформ и др.). Почти все алкалоиды не обладают запахом, исключение представляют кониин, никотин, анабазнн и некоторые другие. Многие алкалоиды оптически активны. С кислотами алкалоиды образуют соли, большей частью растворимые в воде. Прн наличии одного атома азота в молекуле они присоединяют одну молекулу одноосновной кислоты при наличии двух атомов азота они способны присоединять одну или две молекулы одноосновной кислоты, образуя кислые и средние соли, что сказывается на константах их диссоциации. Являясь слабыми основаниями, алкалоиды образуют с кислотами легко диссоциирующие соли, разлагающиеся под влиянием едких щелочей, аммиака, а иногда карбонатов и окиси магния при этом выделяются свободные основания. Некоторые алкалоиды, помимо основных свойств, характеризуются реакциями, зависящими от наличия в их молекуле функциональных групп, например фенольной (у морфина, сальсолина), кетонной (у лобелина), ви-нильной (у хгнина) и др., что отражается на нх химических свойствах. Напрнмер, морфин растворяется в растворах едких щелочей, лобелии образует карбонильные производные, хинин присоединяет водород, галогены и др. [c.418]

    Конкурирующим процессом в случае анионотропной перегруппировки, катализируемой кислотой, является прототропная изомеризация, которая также может приводить к образованию карбонильных продуктов в результате миграции двойной связи с последующ,ей кето-енольной таутомерией. В случае аллиловых и а-алленовых спиртов протеканию этого альтернативного процесса способствует наличие алкильных заместителей у винилового р-атома углерода. Прототропные перегруппировки стимулируются также рядом других реагентов [328] основаниями, некоторыми металлами (например, Рд, Си), оксидами металлов и карбонилами металлов например. Ре (СО) 5]. Перегруппировки аллиловых спиртов в карбонильные соединения катализируются также некоторыми растворимыми комплексами Ки и КЬ, предположительно за счет внутримолекулярного переноса водорода [329], а не путем миграции двойной связи [уравнение (256)]. Еще одной перегруппировкой, которую следует отметить в данном разделе, является [3, 3]-сигматропная оксиперегруппировка Коупа уравнение (257) [330]. В зависимости от заместителей и геометрических особенностей могут осуществляться как согласованный, так и дирадикаль-ный механизмы. Применение высоких температур, необходимых для перегруппировок свободных спиртов в газовой или жидкой фазе, можно исключить, если в подходящих случаях использовать алкоксиды в ТГФ [331]. Таким путем (1416) был получен с выходом по меньщей мере 98% из калиевой соли (1406) после короткого кипячения с последующей обработкой водой. В случае проведения [c.111]

    Экстракция растворимых белков из тканей может происходить только после разрушения клеточных оболочек, так как последние непроницаемы для больших белковых молекул. Разрушения клеток можно достичь механическим путем, растирая их с песком или с кизельгуром однако при этом наблюдается некоторая потеря белка за счет денатурации, вызываемой адсорбцией белка на силикате. По этой причине лучше разрушать клетки такими приборами, как мясорубка Латапи или гомогенизаторы. Структура клетки разрушается также при действии органических растворителей, например спирта, ацетона или глицерина. Если концентрация глицерина не превышает 85%, то в глицериновый экстракт переходит значительная часть растворимого белка. Этим способом можно экстрагировать гидролитические ферменты из поджелудочной железы и из других органов. Глицериновые экстракты при комнатной температуре относительно стабильны. Повидимому, рыхлая ассоциация белка с полярными гидроксильными группами глицерина уменьшает скорость его денатурации. Однако эти же полярные группы в молекуле глицерина обусловливают взаимное притяжение его молекул и высокую вязкость этого растворителя. Из глицериновых экстрактов очень трудно поэтому получить чистые препараты белков. В связи с этим глицерин в настоящее время редко применяется для разрушения клеточных оболочек. Вильштеттер и его сотрудники для разрушения клеток пользовались ацетоном. Этот метод основан на том, что многие белки при концентрации ацетона выше 80—90% денатурируются очень медленно. Для экстракции размельченный или пропущенный через мясорубку орган помещают в ацетон. Преимущество этой процедуры заключается в том, что ацетон не только разрушает клеточные оболочки, но одновременно экстрагирует из клеток и большинство липидов. Липиды можно затем удалить количественно при последующей обработке эфиром. Остаток после удаления липидов высушивается на листе фильтровальной бумаги и экстрагируется водой, разведенными растворами солей или буферов. Хотя большинство белков, в том числе много важных ферментов, можно получить из ацетоновых вытяжек в нативном состоянии, однако надо помнить, что некоторые лабильные белки при действии этого растворителя денатурируются. [c.10]


    Соли замещенного аммония представляют собой бесцветные кристаллические вещества, хорошо растворимые в воде и трудно растворимые в гидрофобных органических растворителях типа углеводородов. Некоторые из них настолько гигроскопичны, что расплываются при стоянии на воздухе. Растворимость солей замещенного аммония в воде убывает с увеличением молекулярного веса амина. Так, например, соли 1,3-диалкилбензтриазолия трудно растворимы в воде. Соли четвертичных аммониевых оснований образуют с хлорной платиной труднорастворимые в воде комплексы. Эта реакция может служить для их идентификации и количественного определения. При повышенной температуре соли замещенного аммония разлагаются с образованием соли третичного амина и непредельного соединения  [c.119]

    Перспектива применения первого способа пока неясна, поскольку не найден экстрагент, плохо смешивающийся с водой и растворяющий соль в достаточных количествах для целей опреснения 1271. Второй способ основан на свойстве некоторых органических веществ избирательно экстрагировать воду, оставляя ионные примеси в рассоле, и на резком изменении растворимости воды в них при изменении температуры. Растворители, применяемые в качестве экстрагента, должны обладать определенными свойствами высокой селективностью (вода, вошедшая в состав экстракта, должна содержать значительно меньше солей, чем нерастворен-ная часть воды) резким изменением растворимости в зависимости от температуры (чтобы при незначительном ее изменении большая часть воды экстракта выделялась в отдельную фазу) желательно, чтобы растворимость воды в экстрагенте была значительно больше, чем растворимость экстрагента в воде. Кривая растворимости вода — растворитель должна быть асимметричной, в противном случае затраты на извлечение растворителя из опресненной воды и рассола будут чрезмерно высокими. [c.399]


Смотреть страницы где упоминается термин Растворимость некоторых солей и оснований в воде при температурах: [c.125]    [c.94]    [c.71]    [c.171]    [c.113]    [c.21]    [c.303]    [c.79]    [c.49]    [c.96]    [c.57]   
Смотреть главы в:

Графические расчеты в технологии солей  -> Растворимость некоторых солей и оснований в воде при температурах

Графические расчеты в технологии солей -> Растворимость некоторых солей и оснований в воде при температурах




ПОИСК





Смотрите так же термины и статьи:

Растворимость в воде

Растворимость солей



© 2025 chem21.info Реклама на сайте