Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Образование продуктов конденсации с карбонильными соединениями

    При сульфатировании получается ряд побочных продуктов. Так, за счет дегидратирующего действия серной кислоты образуются олефины, выход которых растет для вторичных и особенно для третичных спиртов. Из-за окисляющего влияния серной кислоты образуются альдегиды и кетоны, способные к дальнейшему осмолению и конденсации (при получении ПАВ это ведет к потемнению продукта и снижению его качества). Поскольку образование олефинов и карбонильных соединений растет с повышением температуры, то ограничение ее на уровне 20—40°С является основным путем подавления нежелательных побочных реакций. По [c.318]


    ОБРАЗОВАНИЕ ПРОДУКТОВ КОНДЕНСАЦИИ С КАРБОНИЛЬНЫМИ СОЕДИНЕНИЯМИ [c.147]

    Для наиболее полного разложения соединений эфирного и карбонильного характера, входящих в состав жирных кислот, а также чтобы исключить образование продуктов конденсации, расплавленное мыло подвергали дальнейшему термическому воздействию в отделителе. [c.90]

    Ю. А. Горин изучил также [24] механизм образования побочных продуктов контактного превращения этилового спирта в дивинил. Он показал, что многие из побочных продуктов получаются конденсацией карбонильных соединений в промежуточных стадиях. [c.119]

    Реакция, как правило, сопровождается образованием аминов более высокой, чем заданная, степени алкилирования, так как первичный амин, получающийся при восстановительном алкилиро-вании аммиака, частично реагирует с карбонильным соединением и дает вторичный амин, который, в свою очередь, может тем же путем превращаться в третичный амин. Кроме того, как и при гидрировании нитрилов, возможны процессы конденсации с з частием интермедиатов (см. 1.6.5), увеличивающие, особенно при повышенных температурах, выход тех же побочных продуктов. Преимущественное получение амина заданной степени алкилирования определяется соотношением реагентов. Его доля в продуктах алкилирования заметно зависит также от строения карбонильного соединения и условий реакции. Например, гидрирование фурфурола в присутствии избытка аммиака на скелетном никеле приводит к образованию первичного амина с выходом 79 %, тогда как при мольном отношении альдегида к аммиаку 2 1 в основном получается уже вторичный амин  [c.65]

    Бензофенон конденсируется с карбанионами с трудом однако при реакции конденсации Штоббе с диэтиловым эфиром янтарной кислоты бензофенон конденсируется гладко и с высоким выходом. Легкость, с которой происходит эта реакция, заставляет предположить образование промежуточных соединений, например I, которые увеличивают реакционную способность. Поэтому диэтиловый эфир янтарной кислоты особенно легко конденсируется с карбонильными соединениями. Опубликован обзор [351, посвященный этой реакции. Ее применимость для синтетических целей определяется ценностью получаемого продукта декарбоксилирования, т. е. ненасыщенных кислот или лактонов [36] [c.327]

    Альдольная конденсация (гл. 4, < Спирты , разд. Ж-1) карбонильных соединений с моноэфирами не является общим методом, возможно, вследствие того, что при этом происходит также образование продуктов самоконденсации, а также потому что диэфиры легко конденсируются сами с собой. Тем не менее известны примеры таких реакций  [c.328]


    Большую группу макроциклических соединений, обладающих высокой степенью ненасыщенности, можно получить из ароматических о-аминобензальдегидов Одновременное наличие в молекулах исходных соединений карбонильной и аминогруппы облегчает прохождение с их участием различного рода реакций самоконденсации От алифатических аналогов эти соединения отличаются большей стабильностью, а от своих ароматических мета- и пара-изомеров — большей склонностью к образованию циклических продуктов конденсации [c.101]

    Образование первоначального полуацеталя путем взаимодействия тиольной группы с карбонильным соединением подтверждается тем, что это соединение, реагируя с формальдегидом, дает продукт конденсации по следующей схеме  [c.133]

    В общем цикле превращений может принять участие и образующийся продукт при конденсации карбонильных соединений он является оксиальдегидом или окснкетоном. В результате побочно получаются более высокомолекулярные вещества. Кроме того, альд-oj H и исходный альдегид дают ацетали, что облегчается в случае образования более стабильных циклических ацеталей — производных 1,3-диоксана (стр. 555). [c.574]

    Конденсацию карбонильных соединений с этими реагентами проводят, как правило, в присутствии электрофильного катализатора, чаще всего — протона. Роль катализатора сводится к образованию координационной связи с карбонильной группой, вследствие чего облегчается атака этой группы нуклеофилом. Конечный продукт получается в результате атаки наиболее нуклеофильным атомом азота, переноса протона и 1,2-отщепления. Эта последовательность показана ниже на примере реакции ацетона с семикар-базидом. [c.29]

    Хлорацетофенон легко окисляется (гипохлориты, КМпО , rOg в водных суспензиях), причем окисление идет по месту карбонильной группы с образованием бензойной кислоты. Этой реакцией часто пользуются для определения положения замещающих атомов или групп в бензольном ядре производных ацетофенона или хлорацетофенона. В отличие от других соединений, содержащих карбонильную группу, хлорацетофенон не дает соединения с бисульфитом натрия. Кроме того с фенилгидразином не получаются соответствующие гидразоны, а имеет место сложная реакция, в которой участвуют и карбонильная группа и подвижный галоид хлорацетофенона с образованием продукта конденсации— 1,3-дифенил-1,2-диазоциклобутен (желтые кристаллы темп. пл. 137° с разложением ). [c.33]

    Все перечисленные способы получения сводятся к использованию реакции присоединения — элиминирования, характерной для карбонильных соединений. Образование иминопроиз-водных карбонильных соединений катализируется как кислотами, так и основаниями. Этим объясняется относительное разнообразие применяемых катализаторов конденсации. На первом этапе в результате атаки неподеленной электронной пары азота по карбонильному углероду образуется тетраэдрический интермедиат. Механизм образования конечного продукта реакции определяется природой катализатора. В случае общего основного катализа происходит депротонирование атома азота, согласованное с элиминированием гидроксид-иона. При общем кислотном катализе распад интермедиата сопровождается отщеплением молекулы воды. В зависимости от pH среды меняется лимитирующая стадия процесса. В кислой среде лимитируется стадия образования интермедиата, в нейтральной и щелочной средах — распад интермедиата. При проведении конденсации в кислой среде гидразиновая группа является более реакционноспособной, по сравнению с проведением реакции в нейтральной и щелочной средах. [c.13]

    В тех случаях, когда фотохимическая реакция может происходить при облучении реакционной смеси видимым светом, можно пользоваться обычными электрическими лампами накаливания. Например, Pao и Аравамудан [341] при окислении щавелевой кислоты сульфатом церия(1У) использовали свет вольфрамовой лампы мощностью 1000 вт. Спайс и Чембер [384, 385] при фотометрическом определении триптофана, включающем образование продукта конденсации с диметиламинобензальдегидом и фотохимическое окисление этого продукта до интенсивно окрашенного соединения, успешно использовали свет электрической лампы мощностью 115 вт. Панвар и Гаур [313] при определении карбонильных соединений, основанном на фотохимическом окислении ванадием(У), облучали реакционную смесь вольфрамовой лампой накаливания мощностью 1000 вт. [c.138]

    Такие же особенности были отмечены и для превращений а- и р -метилнафталинов при 400—450° С на цеолитах КХ и КЬХ, причем КЬ-форма была более активной [22]. Продукты реакции, как и в работе [20], представлены главным образом соответствующими этил-нафталинами с очень небольшой примесью винилнафталинов. Наряду с основными продуктами алкилирования обнаружены диметиловый эфир, окись углерода и водород. Если рассмотренные реакции алкилирования действительно проходят через стадию образования формальдегида, то механизм их может быть тем же самым, что и в реакции конденсации карбонильных соединений, о которых речь пойдет ниже. Однако определенно решить этот вопрос трудно, поскольку не известно, каким образом активируется связь С —Н в бензильной группе. Возможно, что эти реакции представляют собой редкие примеры превращений на цеолитах через карбанион. [c.133]


    Многочисленные реакции конденсации карбонильных соединений включают стадию нуклеофильной атаки енолят- или фенолят-аниона. Названия некоторых из таких реакций, например альдольная или сложноэфирная конденсация, отражают химическую сущность процесса, однако в большинстве случаев они связаны с именами химиков — Кляйзена, Перкина, Дик-мана, Манниха, Михаэля, Кневенагеля. Три основных типа конденсаций карбонильных соединений — это реакция ацилирования, альдольная конденсация и реакция Михаэля [1]. Если карбонильное соединение представляет собой производное кислоты, атака енолята сопровождается отщеплением основания и, таким образом, происходит ацилирование. Однако в случае альдегидов и кетонов часто можно (в мягких условиях) выделить продукт присоединения — альдоль. Применение более жестких условий приводит к дегидратации альдоля (если это возможно) и образованию а,Р-непредель-ных карбонильных соединений. Реакция карбонильных соединений с енолятами может протекать также по типу сопряженного присоединения, известному как реакция Михаэля. [c.420]

    Наряду с образованием нейтральных продуктов уплотнения и высокополимерных смол (молекулярный вес 500), имеющих кислый характер, под действием щелочи идут реакции сложноэфир-ной конденсации и омыления, в результате которых образуются кислоты. При этом образование кислых веществ может быть только частично объяснено реакцией омыления сложных эфиров и нейтральных фенолов, содержавшихся в исходном сырье основная же масса кислых веществ может быть получена лишь за счет сложноэфирной конденсации карбонильных соединений. Характеристика кислых продуктов приведена в табл. 10. [c.87]

    Тиазолидины и 2-тиазолины явлйготся продуктами восстановления тиазолов полностью насыщенное тиазолидиновое кольцо может быть получено из тиазола через стадию образования четвертичного основания с последующим восстановлением борогидридом натрия (уравнение 107) [145]. Чаще синтез тиаэолидинов осуществляют конденсацией карбонильного соединения с р-амино-алкантиолом (уравнение 108) [146]. Это превращение применялось в синтезе пенициллина. Другие аспекты химии тиазолидина рассмотрены В гл. 23.5. [c.230]

    Всеми этими работами совершенно отчетливо показано, что процесс образования двуэтиленовых углеводородов из спиртов и из их смесей с карбонильными соединениями протекает через стадии конденсации карбонильных соединений и дегидратации полученных продуктов в непредельные альдегиды или кетоны. Установлено, что когда такая конденсация невозможна, двуэтиленовые углеводороды не образуются. Из изобутилового спирта нельзя получить на катализаторе Лебедева таких углеводородов [21], так как дегидрогенизация его приводит к изомасляному альдегиду, который превращается далее в изобутиральдоль. Однако из изо-бутиральдоля получить непредельный альдегид невозможно поскольку водород у а-углеродного атома, необходимый для отщепления воды, в этом случае отсутствует. Точно так же третичные спирты, например триметилкарбинол [22], не дают двуэтиленовых углеводородов лишь потому, что из этих спиртов нельзя получить карбонильных соединений. [c.119]

    Конденсация ароматических амннов. и карбонильных соединений с образованием циклических продуктов лгаиболее подробно изучена на примере так Т1азываемого хинальдигюпого синтеза, который был открыт в 1881 г. Дебнером и Миллером  [c.140]

    Возможны реакции альдольной конденсации между двумя различными карбонильными соединениям и. Однако для того, чтобы они были препаративно поле.эны, реакция должка быть селективной, т. е. один компонент должен быть склонен выполнять роль нуклеофильного агента, а другой — карбонильного компонента. Если эти требования селективности ие удовлетворены, можно ожидать образования смеси продуктов, содержащей как продукту самоконденсации, так и оба возможных продукта смешанной конденсации. [c.43]

    Особое место в ряду гетероциклизаций ненасыщенных карбонильных соединений занимают циклоконденсации на основе ароматических 1,2-диаминов. Эти реакции характеризуются многообразием направлений формирования нового гетероцикла, приводящим к различным, подчас неожиданным, структурам. Данная особенность связана с тем, что, во-первых, продукты "нормального" взаимодействия непредельного кетона с о-диамином - дигидрированные ди- и триазепи-новые системы - весьма химически лабильны и способны к дальнейшим превращениям. Во-вторых, при наличии альтернативы, процесс образования семичленных гетероциклов термодинамически заметно менее выгоден, чем шести-и пятичленных структур (особенно гетороароматических). И как следствие, распространенными явлениями при взаимодействии о-диаминов с халконами являются наложение на процесс конденсации вторичных химических побочных реакций. Такая неоднозначность нашла свое отражение в литературных дискуссиях по строению образующихся продуктов достаточно отметить, что некоторым из них последовательно приписывалось по три и более различных структур. В данном обзоре сделана попытка систематизации накопленных к настоящему времени в литературе данных и анализа закономерностей, касающихся реакций о-диаминов с халконами и их использования в синтезе гетероциклов. [c.140]

    Как видно из приведенного выше обзора различных методов синтеза производных 5,6-бензохинолина, главными исходными продуктами являются 2-нафтиламин и различные кислородсодержащие вещества, в основном карбонильные соединения. Реакция и.ч конденсации до конечного продукта носит многостадийный характер, но две стадии являются основными это, во-первых, образование незациклизованного промежуточного соединения п, во-вторы,х, его циклизация в соединение хинолинового ряда. [c.25]

    Помимо методов, включающих образование новых связей С-С (реакций Гриньяра и некоторых других), для получения аллильных производных можно использовать еще ряд чисто трансформационных превращений. Некоторые из них, например, восстановление а, р-непредельньгх карбонильных соединений (обычных продуктов конденсации кротонового типа), аллильное галогенирование алкенов с помощью М-бромсукцинимида (N68) и изомеризация эпоксидов в аллильные спирты под действием триметилсилилтриф-лата [19с1], показаны на схеме 2.56. [c.142]

    Для получения макроциклических полиненасыщенных соединений применяются как темплатные, так и нетемплатные методы синтеза. Наиболее часто используют реакции конденсации бифункциональных карбонильных соединений с диаминами. Такие реакции обычно проводят в присутствии темплатных агентов. При этом образуются координационные соединения металлов с полиненасыщенными тетраазамакро-циклическими лигандами. Свободный лиганд обычно можно получить взаимодействием металлокомплекса с НС1 или HjS. Нетемплатные методы синтеза свободных лигандов в основном связаны с использованием активированных производных карбонильных соединений. Применение в качестве исходных неактивированных альдегидов или кетонов приводит к образованию нециклических продуктов. [c.82]

    В то же время а,Р-непредельные карбонильные соединения независимо от строения взаимодействуют с литийдиалкилкупра-тами (синтез и свойства-см. разд. 2.3.2) только с образованием продуктов 1,4-присоединения, что используется для получения альдегидов и кетонов с усложненным углеродным скелетом из продуктов кротоновой конденсации  [c.272]

    Алифатические альдегиды реагируют с веществами, содержащими активную метиленовую группу, например с производными малоновой кислоты, р-кетоэфирами и т. д., в присутствии органических оснований или аммиака или их солей. Это так называемая реакция Кневенагеля [ИЗ]. Ее продуктами являются или а,р-нена-сыщенные карбонильные соединения, или бисаддукты, образующиеся при присоединении компонента с активной метиленовой группой к первоначальному продукту по типу конденсации Михаэля в общем виде реакция представлена уравнениями (63) и (64). Наиболее широко применяемым катализатором является пиридин, обычно с добавкой пиперидина, однако достаточно часто используются также аммонийные соли, такие как ацетаты аммония или пиперидиния. При этом могут осуществляться несколько различных механизмов реакции. В ряде случаев, вероятно, протекает взаимодействие альдегида с имином-катализатором, ведущее к образованию имина или иминиевой соли, и эти вещества, а не свободный альдегид, реагируют затем с анионной формой вещества с активной метиленовой группой, образующейся при депротонировании под действием амина. Последующее отщепление воды или амина генерирует сопряженную олефиновую систему. [c.515]

    Альдольная конденсация (118], т. е. присоединение енола или енолят-аниона к карбонильной группе альдегида или кетона, детально обсуждалась для алифатических альдегидов в разд. 5.1.5.2. Поэтому в данном разделе будут упомянуты лишь факторы, специфичные для ароматических альдегидов. В случае алифатических альдегидов обычно удается выделить продукт конденсации альдольного типа, тогда как с ароматическими альдегидами в норме происходит дегидратация в а,р-непредельное карбонильное соединение, если применяется избыток основного или кислотного катализатора. Однако недавно несколько групп исследователей разработали методы генерирования енолов и енолят-анионов в отсутствие избытка основания [119—123]. Последующая конденсация с ароматическими альдегидами протекает с образованием альдольного продукта с хорошим выходом, тогда как прежде из-за побочных реакций самоконденсации (для енола) и полиаль-дольной конденсации образовывались сложные смеси продуктов, особенно с алифатическими субстратами. При использовании предварительно приготовленных енолятов и низких температур было обнаружено, что альдольные конденсации проявляют высокую стереоселективность, если присутствуют объемистые заместители [схема (57)], однако с небольшими группами селективность уменьшается или вообще исчезает [122]. Высокую селективность можно объяснить образованием переходного состояния (29), в котором два кислородных атома карбонильных компонентов образуют хелат с катионом металла. В поддержку этого предположения говорит наблюдение, что при отсутствии у катиона хелатообразующей способности, например при использовании К4М+, продукты имеют противоположную стереохимию [уравнение (58)] в этом случае, вероятно, образуется переходное состояние (30), в котором электростатическое отталкивание сведено к минимуму [122]. [c.724]


Смотреть страницы где упоминается термин Образование продуктов конденсации с карбонильными соединениями: [c.1356]    [c.103]    [c.103]    [c.89]    [c.691]    [c.89]    [c.95]    [c.101]    [c.142]    [c.299]    [c.7]    [c.49]    [c.195]    [c.82]    [c.239]    [c.822]    [c.197]    [c.33]   
Смотреть главы в:

Фотометрический анализ издание 2 -> Образование продуктов конденсации с карбонильными соединениями




ПОИСК





Смотрите так же термины и статьи:

Карбонильные соединения

Конденсация карбонильные

Конденсация карбонильных соединений

Образование продуктов конденсации



© 2025 chem21.info Реклама на сайте