Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Действие различных химически агрессивных сред на полимеры

    П.З. ДЕЙСТВИЕ РАЗЛИЧНЫХ ХИМИЧЕСКИ АГРЕССИВНЫХ СРЕД НА ПОЛИМЕРЫ [c.49]

    Галогенсодержащие полимеры имеют большое значение в практике, так как позволяют готовить достаточно термостойкие и стойкие к агрессивным средам материалы и изделия из них. Наиболее распространены хлорсодержащие полимеры, среди которых один из самых массовых — поливинилхлорид, получается полимеризацией винилхлорида. Другим представителем хлорсодержащих полимеров, получаемым в процессе синтеза, является полихлоропрен — один из самых стойких к действию различных агрессивных сред эластомеров. Остальные хлорсодержащие полимеры (хлорированный и хлорсульфированный полиэтилен, хлорбутилкаучук, хлорированный полихлоропрен, хлоркаучук и др.) получаются реакцией хлорирования соответствующих углеводородных полимеров, т. е. путем химической модификации. [c.278]


    Полимерные материалы в процессе эксплуатации или хранения могут контактировать с агрессивными средами, под действием которых протекают следующие процессы сорбция компонентов агрессивной среды десорбция из полимерного материала различных добавок (стабилизаторов, пластификаторов и т.д.) химическая деструкция растворение полимера изменение физической структуры (степени кристалличности, микропористости и т.д.). Под действием [c.408]

    Значительная часть монографии посвящена вопросам разрушения (растрескивания) и долговечности высокоэластических материалов в различных химически и физически агрессивных средах. Учет действия среды на прочностные свойства полимеров необходим как потому, что в обычных условиях следы химически активных примесей в атмосферном воздухе оказывают существенное влияние на эти свойства, так и в связи с расширением областей использования полимерных материалов в различных агрессивных средах. [c.8]

    Стойкость клеевых соединений к действию различных агрессивных сред определяется химической стойкостью полимеров и наполнителей, входящих в состав клея. Большая часть термореактивных клеев стойка к действию масел, растворов солей, кислот и щелочей, органических растворителей. Термопластичные клеи обычно нестойки к органическим растворителям. Прочность клеевых соединений, как правило, мало зависит от воздействия солнечных лучей, так как клеевая пленка защищена металлом или другим склеиваемым телом. [c.32]

    Кроме того, общеизвестны характеристики технических свойств полимеров (прочностных и физико-химических) путем измерения твердости, прочности при статическом изгибе, удельной ударной вязкости, предела прочности при растяжении, теплостойкости, температуры размягчения (плавления) и т. п., стойкости к действию различных агрессивных сред и проч. Такие общетехнические методы испытаний полимеров в этой книге не рассматриваются, так как они широко освещены в технической литературе. [c.18]

    ЗИН на основе ХСПЭ, СКФ-32 и СКФ-26 действие перекиси водорода физически агрессивно, и значение коэффициентов проницаемости по достижении равновесного состояния не изменяется во времени. Концентрированная азотная кислота для резин на основе фторкаучуков тоже является физически агрессивным агентом, так как коэффициент проницаемости при достижении равновесия не изменяется во времени. Диффундирующий агент способен вызвать разрушение резины не только из-за реакции с каучуком, но также и за счет химического взаимодействия с пластификатором или наполнителем. Поэтому в целом химическая стойкость резин зависит прежде всего от природы полимера, наполнителя и пластификатора. В связи с этим при разработке новых марок резин для эксплуатации в агрессивной среде необходимо для снижения диффузии вводить в состав резины активные сажи с развитой первичной структурой и высокой удельной поверхностью, а также пластинчатые наполнители (слюда). В качестве мягчителей рекомендуются различные полимерные смолы. [c.197]


    В монографии изложены теоретические основы химической деструкции полимеров в жидких агрессивных средах. Подробно рассмотрены механизмы распада химически нестойких связей в различных полимерах, типы распада макромолекул, диффузия агрессивных сред в полимерах, макрокинетика распада, влияние агрессивных сред на механические свойства полимеров. Показаны пути определения долговечности и прогнозирования изменения эксплуатационных свойств полимерных изделий в агрессивных средах, а также способы определения защитного действия полимерных покрытий. [c.2]

    Химическая стойкость и старение полимеров. В популярной литературе широко принято утверждение, что полимеры и пластмассы не подвергаются коррозии, не поддаются агрессивному действию различных активных сред и являются химически очень стойкими во времени. Следует точнее характеризовать эти свойства полимеров. [c.610]

    В процессе эксплуатации покрытия могут испытывать воздействие различных химических агентов кислорода воздуха и других газов, воды, водных растворов кислот, щелочей, солей, растворителей, жидкого топлива, нефтепродуктов, пищевых продуктов и т. д. Воздействие может быть индивидуальным и комплексным с участием одной или многих разнообразных сред. Если сопротивление материала пленки протеканию химических и физических процессов окажется недостаточным, произойдет ее разрущение. Последнее обычно начинается с обратимых физических процессов, которые перерастают в необратимые химические. Так, пролитая на полированном столе вода может вызвать побеление пленки лака. При быстром удалении воды побеление (результат набухания полимера) может исчезнуть, если же вода действует длительно, она может вызвать необратимый процесс гидролиза пленкообразователя, и побеление не исчезнет, несмотря на полное удаление воды. Независимо от характера процессов начальным этапом химического разрушения покрытия являются диффузия и сорбция агрессивных агентов. [c.187]

    Политетрафторэтилен не растворяется и не набухает ни в одном из применяемых растворителей. Полимер характеризуется исключительно высокой стойкостью к действию различных агрессивных сред. Он не изменяется даже при высокой температуре под действием концентрированных кислот (в том числе плавиковой кислоты), окислителей (азотной кислоты, озона и т. д.), щелочей. Химическая деструкция полимера происходит только под действием металлического натрия или калия, растворенных в жидком аммиаке. [c.314]

    Покрытия из фторсодержащих полимеров широко применяют в различных отраслях народного хозяйства в качестве антикоррозионных, электроизоляционных, антифрикционных, антиад-гезионных, абразивостойких. Покрытия сохраняют, в основном, свойства, присущие исходным полимерам, в том числе стойкость к агрессивным средам. Однако следует учитывать, что защитное действие покрытий от агрессивных сред определяется не только химической стойкостью полимера, но и диффузионной проницаемостью и адгезией покрытия к субстрату. Назначения и некоторые характеристики основных типов покрытий из фторопластов приведены пиже  [c.216]

    В связи с наметившейся за последнее время тенденцией вести обессоливание нефти в электродегидраторах при температурах выше 100° С продолжаются поиски теплостойкого материала для изоляторов, способного обеспечить их надежную работу при повышенной температуре. Таким материалом оказался полимер тетрафтор-этплена (фторопласт-4). Как известно, максимальная температура эксплуатации фторопласта-4 250° С. Полимер нерастворим и не набухает ни в одном из известных в настоящее время растворителей (за исключением фторированного керосина при 300° С). Ценным свойством фторопласта-4 является его исключительная стойкость к действию различных агрессивных сред (даже при высоких температурах). Перечисленные свойства вполне позволяют использовать фторопласт-4 в качестве прочного, упругого, химически стойкого морозо- и теплостойкого материала для изоляторов, обладающего при этом наилучшими диэлектрическими свойствами, мало изменяющимися в широком диапазоне температур и частоты тока. [c.56]

    Силиконы, или кремнийорганические полимеры, которые можно рассматривать как органические производные силикатов, получают путем проведения последовательно гидролиза мономеров и поликонденсации из алкил- и арилхлорсиланов и т. д. Они отличаются высокой термостойкостью, химической стойкостью и эластичностью. В зависимости от характера связи между молекулами и природы входящих в их состав радикалов силиконы можно получать в виде смол, каучукоподобных веществ, масел или жидкостей. На основе этих соединений производят жаростойкие, жаропрочные лаки, жидкие смазки, силиконовые каучуки и слоистые пластики. Наибольшее значение приобретают силиконовые полимеры, используемые в качестве покрытий, устойчивых во многих агрессивных средах, кислороде, озоне, влажной атмосфере, к действию ультрафиолетового облучения, а в комбинации с различными наполнителями и к нагреву до 500—550 °С. В качестве наполнителей используют чаще всего порошкообразные алюминий, титан или бор. Силиконовые покрытия наносят на различные металлические конструкции для защиты их от коррозии. [c.141]


    Приведенные данные свидетельствуют о необходимости использования для упаковки ПЛС более прогрессивных полимерных материалов, обладающих комплексом ценных свойств, не присущих другим материалам при удовлетворительной механической прочности, жесткости и поверхностной твердости они обладают меньшей хрупкостью, чем стекло, или вовсе лишены ее многие пластмассы химически инертны и нейтральны и в то же время устойчивы к действию щелочей, кислот, окислителей, восстановителей и других агрессивных сред. Кроме того, они могут перерабатываться в изделия сложной конфигурации, а эластичность некоторых полимеров позволяет создавать из них принципиально новые конструкции упаковочных средств различной (шестимости (от 50 до 1000 мл). Важным свойством многих полимеров является прозрачность [20]. [c.383]

    Физико-механические свойотва полиэтилена низкой и высокой плотности в сравнении с некоторыми материалами приведены в таблицах 27 и 28. Химическая стойкость труб из полиэтилена при действии различных агрессивных сред определяется содержанием в ооставе полиэтилена наполнителя, качеством исходного полимера и зависит от температуры и концентрации агрессивной среды.По данным некоторых исследователей, введение наполнителей повышает механические свойства и снижает стоимость полиэтиленовых труб, но снижает их механическую стойкость [э]. Результатом снижения химической стойкости полиэтиленовых труб является их набухание, увеличение массы, изменение цвета, ухудшение механическихавойотв материала. Набухание предшествует разлолЕению материала и является началом диффузионного процесса воздействия агрессивной среды яа полиэтилен во времени. Б зависимости от температуры и среды очаги разрушения лрояикают в глубь материала, а связанное с набуханием увеличение объеме вызывает значительные напряжения, которые приводят к разрушению структуры полиэтиленовых труб. [c.67]

    Химическая стойкость покрытия. Стойкость покрытия в различных агрессивных средах определяется способностью полимера противостоять химическому действию агрессивной среды степенью набухания в агрессивной среде коэффициентом диффузии, характеризующим скорость проникновения среды через покрытие устойчивостью к агрессивной среде различных наполнителей, пластификаторов, красителей, п ротивостарителей, вводимых в полимер [c.173]

    Чем выше энергия связи между углеродными атомами основной цепи полимера и замещающими атомами или группами атомов, тем более стойким является полимер к действию агрессивных сред. Высокой химической стойкостью обладают полимеры этилена с различной степенью замещения в них атомов водорода на атомы фтора. При полном замещении водорода фтором образуется наиболее инертный в химическом отношении полимер — политетрафторэтилен, или фторопласт-4. Энергия связи между атомами углерода и фтора достигает 124 ккал1моль, тогда как энергия связи между атомами углерода и водорода и между углеродными атомами в основной цепи полиолефинов составляет соответственно 88 и 58,6 ккал/моль. [c.176]

    Полимеры непредельных фторуглеродов или фторхлор-углеродов отличаются высокой теплостойкостью и устойчивостью к действию различных агрессивных сред - . Придание этим высокополимерам пористой структуры представляет большое практическое значение, так как такие поропласты могут быть с успехом использованы в качестве химически стойких мембран для аккумуляторов и материалов для фильтрования агрессивных жидкостей. [c.98]

    Присущая бутилкаучуку высокая газонепроницаемость и малая водонабухаемость, наряду с другими ценными свойствами, дают возможность широко использовать этот полимер в технике защиты от коррозии. Резины на основе бутилкаучука противостоят некоторым органическим растворителям, которые действуют разрушающе не только на полиизобутилен, но и на бензомаслостойкие бутадиен-нитрильные каучуки. К таким растворителям относятся, например, ацетон, анилин, нитробензол м и др. В табл. 9 приведены данные по химической стойкости в различных агрессивных средах резин на основе бутилкаучука и полиизобутилена. Как видно из таблицы, химическая стойкость бутилкаучука в минеральных и растительных маслах значительно выше, чем полиизобутилена. [c.28]

    В монографии рассматривается действие агрессивных сред на полимеры в ненапряженном состоянии и при различных механических режимах нагружения (статическое и многократное растяжение, трение по гладкой поверхности, износ в агрессивной пульпе). Освещено влияние химического строения и струк туры полимеров, а также параметров среды на сопротивление их разрушению. Описаны методы испытаний и методы повышения стойкости полимерных материалов в агрессивных средах. [c.525]

    Термические и электрические свойства клеевых эпоксидных смол, их стойкость к действию кислорода, различных агрессивных сред, биологических факторов и поведение в условиях космического пространства имеют большое значение, так как определяют области возможного использования эпоксидных клеев. Интервал рабочих температур эпоксидных смол в зависимости от химической природы, состава и условий отверждения находится в пределах от —250 до -Ь260°С, а иногда (кратковременно) и несколько выше. К наиболее теплостойким клеям относятся композиции на основе циклоалифатических полимеров и смол, модифицированных органическими и элементоорганическими соединениями. Длительное воздействие высоких температур не оказывает существенного влияния на свойства большинства эпоксидных клеящих полимеров. Уменьшение прочности эпоксидной клеевой композиции, отвержденной дициандиамидом, при старении в течение года при 100 и 150 °С составляет соответственно 15 и 18%. [c.73]

    С проблемой химической стойкости полимеров приходится стал киваться исследователям, инженерам и конструкторам, работаю щим в различных областях народного хозяйства. Помимо огромно го числа химических реагентов деструктивное воздействие на по лимеры оказывают, например, моющие средства, морская вода выхлопные газы, содержащие диоксиды азота, серы и др. О том какое внимание исследователей привлекает эта проблема, свиде тельствует огромное число появившихся за последнее десятилетие работ — их около 5000. Однако монографий, посвященных химической стойкости полимеров, в мировой литературе всего две. Это книга Б. Долежала Коррозия пластических материалов и резин , вышедшая в 1964 г. и содержащая материал, опубликованный до 1962 г., и монография Ю. С. Зуева Разрушение полимеров под действием агрессивных сред (1972 г.), посвященная в основном резинам. [c.8]

    И.З рис. 19 видно, что химическая стойкость лакокрасочных покрытий при действии различных кислот уменьшается с повышением температуры. Это связано с увеличением скорости Т1иффузии агрессивного вегцества в пленку полимера, а также химической реакции между полимером и агрессивной средой. [c.97]

    Характер взаимодействия полимеров с газообразными и жидкими средами в значительной мере определяют сорбционные и диффузионные процессы. До настоящего времени не полностью изучены физико-химические процессы, происходящие в деформируемом полимерном теле при одновременном действии жидких сред и механических напряжени11 при различных температурах. Это объясняется сложностью физико-химических процессов и методическими трудностями, связанными с созданием и точным измерением напряженного состояния испытуемых образцов в условиях их контакта с агрессивными жидкостями при одновременной регистрации параметров происходящих процессов. [c.38]


Смотреть страницы где упоминается термин Действие различных химически агрессивных сред на полимеры: [c.244]    [c.804]    [c.140]    [c.140]    [c.140]    [c.7]    [c.2]    [c.6]    [c.65]   
Смотреть главы в:

Разрушение полимеров под действием агрессивных сред Издание 2 -> Действие различных химически агрессивных сред на полимеры




ПОИСК





Смотрите так же термины и статьи:

Агрессивность среды

Действие химическое

Полимеры химическая

Различные среды



© 2025 chem21.info Реклама на сайте