Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Получение и физические свойства щелочных металлов

    Написать уравнение реакции получения гидрида лития. Как отличаются гидриды щелочных и щелочноземельных металлов от водородных соединений неметаллов по характеру валентной связи и физическим свойствам  [c.263]

    Щелочные металлы. Общая характеристика на основе положения в периодической системе элементов. Получение, физические и химические свойства. Оксиды и пероксиды щелочных металлов. Гидроксиды щелочных металлов, получение, химические свойства (гидроксиды натрия и калия). Важнейшие соли натрия и калия, их применение. Калийные удобрения. [c.8]


    Получение и физические свойства щелочных металлов [c.414]

    Каждый из элементов описывается по единой схеме сначала излагаются история открытия, нахождение в природе, получение, физические свойства, химические свойства простого вещества. Затем описываются соединения данного элемента с другими, имеющими меньший систематический номер. Они располагаются в порядке возрастания систематических номеров второго компонента сначала соединения с водородом (систематический номер 2), затем с кислородом (№ 3), азотом (№ 4), галогенами (№ 5, 6, 7, 8), халькогенами (№ 9, 10, И, 12), бором (№ 13), углеродом (№ 14), кремнием (№ 15), фосфором (№ 16), мышьяком (№ 17), сурьмой (№ 18), висмутом (№ 19). За висмутом начинаются систематические номера металлов, сгруппированные по подгруппам периодической системы щелочные металлы (№ 20—25), щелочноземельные металлы (№ 26—31) и т. д. [c.7]

    Гидриды рубидия и цезия МеН в зависимости от метода получения представляют собой либо белое сильно блестящее вонлоко-образное вещество, либо белую довольно плотную массу. Подобно гидридам других щелочных металлов, гидриды рубидия п цезия имеют кубическую гранецентрированную решетку типа хлорида натрия [69]. Основные физико-химические свойства НЬН и СзН приведены в табл. 4. Гидриды рубидия и цезия относятся к солеобразным соединениям, содержащим анион Н , который по своим физическим особенностям близок к галогенид-ионам. Наличие структуры Ме" —Н можно объяснить большим потенциалом ионизации атома водорода (13,595 эв) по сравнению с потенциалом ионизации рубидия и цезия (см. табл. 1) и наличием у атома водо- рода небольшого сродства к электрону (0,75 эв) .  [c.82]

    Получение металлов в свободном виде и их физические свойства. Ввиду высокой химической активности щелочно-земельных металлов чаще всего их получают электролизом расплавленных галидов. [c.297]

    Общая характеристика металлов физические и химические свойства. Общие способы получения металлов. Электрохимический ряд напряжений металлов. Общая характеристика 1А-и ПА-групп периодической системы. Свойства натрия, калия, кальция и магния и их соединений. Жесткость воды и способы ее устранения. Свойства алюминия и его соединений. Свойства оксидов и гидроксидов хрома (+2), (+3), хроматов и дихроматов. Свойства перманганата калия восстановление перманганат-иона в кислой, нейтральной и щелочной средах. Свойства железа, оксидов и гидроксидов железа (+2) и (+3). Свойства соединений меди (+1) и (+2). Свойства оксида и гидроксида цинка. Медико-биоло-гическое значение соединений указанных металлов. [c.757]


    Опыт показал, что поверхность металла даже при тщательнейшей очистке еще не готова для нанесения толстого электролитического покрытия с хорошим сцеплением. Мешают дефекты поверхности. Например, в результате механической обработки могут настолько измениться физические свойства поверхностного слоя, что адсорбция будет отсутствовать. Или же в процессе травления поверхность может сильно обогатиться углеродом. Очень часто и потенциал металла относительно электролита не благоприятен для хорошего осаждения первого слоя покрытия. Поэтому необходимы особые меры. Так, обрабатываемую деталь подвергают действию тока очень высокой плотности, например в хромовом электролите. Там, где это невозможно, применяют специальные электролиты для получения начального слоя, которые обладают особенно высокой кроющей и рассеивающей способностью. Выход по току при этом невелик, но это несущественно, так как детали находятся в ванне всего несколько минут. Чаще всего здесь применяются щелочные электролиты, в которых содержание свободного цианида калия или натрия значительно выше, чем в обычных растворах. (В случае меднения избыток цианида калия или натрия не должен быт) [c.680]

    Все гидриды щелочных металлов являются типичными ионными (солеобразными) соединениями. Лишь гидрид лития — самого легкого и наиболее электроположительного из щелочных металлов — в известной степени имеет черты ковалентного соединения. Ввиду значительной близости химических свойств, для каждого из гидридов щелочных металлов будут рассмотрены отдельно только физические свойства и способы получения. Химические свойства всех гидридов приведены в конце главы. Такая последовательность изложения материала обусловлена также тем, что подробно изучены лишь химические реакции гидридов лития и натрия. Гидриды же калия, рубидия и цезия, из-за их чрезвычайно высокой химической активности, изучены недостаточно. [c.49]

    Более подробно, чем в школьных учебниках, изложен материал о распространенности щелочных и щелочноземельных металлов в природе, об истории их открытия, физических и химических свойствах, химических соединениях, получении 1И применении этих металлов. [c.22]

    Канифоль применяется во многих отраслях промышленности, а также служит исходным сырьем получения химическим путем новых ценных продуктов. Получение производных канифоли основывается на физических и химических свойствах смоляных кислот, которые при соответствующей обработ е образуют соли щелочных металлов или мыло, а также соли келых металлов, называемые резинатами. При взаимодействик. анифоли со спиртами получаются эфиры. При других реакциях возможно образование спиртов, нитросоединений, аминов и т. п. При наличии у смоляных кислот ненасыщенного ядра возможны реакции изомеризации, полимеризации и конденсации, с получением при с/Том многих ценных соединений. При термическом разложении канифоли получают разнообразные канифольные масла. Ниже приводятся краткие сведения об основных производных канифоли. [c.281]

    Напишнте урзвнения реакций получения гидрида лития из полуокиси лития и вззимодействия гидрвда с водой. Как отличаются гидриды щелочных металлов от водородных соединений неметаллов по хзрактеру химической связи и физическим свойствам  [c.227]

    Получение и свойства. Строение кристаллических решеток. Получают эти металлы обычно электролизом расплавленных хлоридов, магний — также восстановлением оксида MgO углем в электрических печах и другими способами. Барий чаще всего получают алюминотермическим способом. Бериллий, магний и при высокой температуре кальций образуют кристаллы с гексагональной плотной упаковкой, а стронций и при низкой температуре кальций имеют кубическую гранецентрированную решетку. Для бария характерна объемноцентриро-ванная упаковка. Это различие решеток играет некоторую роль в нарушении закономерности различий плотности, температур плавления и других физических свойств. Атомы их, кроме бериллия, теряют два электрона, превращаясь в ионыЭ . Но их восстановительная способность слабее, чем у щелочных металлов. [c.275]

    По методике, которую с успехом использовали Капачо-Дельгадо и Маннинг [176], 1 г образца превращают в пастообразную смесь добавлением 10 мл воды. После этого прибавляют 10 мл коицентрированной НС1 и полученную смесь нагревают. Далее раствор полностью выпаривают, а остаток вновь растворяют в 10 мл 50%-ной НС1 (по объему). Раствор отфильтровывают и разбавляют до 100 мл. В полученном фильтрате можно определять Са, Ре, Mg, Мп, Sr, К, Li, Na, Al и Ti. При определении Mg, Sr, Al и Ti рекомендуется использовать пламя закись азота-ацетилен, а для контроля ионизационных помех в эталонные и исследуемые растворы добавлять 0,1 — 1% щелочных металлов или 1 % лантана. При анализе растворов в пламени воздух — ацетилен в эталоны можно добавлять кальций, чтобы уравнять общее количество вещества, находящееся в эталонном и исследуемом растворах. Присутствие кальция при определении Na и К устраняет ионизационные помехи и позволяет уравнять физические свойства эталонов и образцов, представляющих собой растворы цемента. [c.192]


    Вопросы для самопроверки 1. Какое положение в периодической системе занимают щелочные металлы Как в ряду от Li к s изменяется размер атомов элементов и металлические свойства элементов Какой из щелочных металлов образует наиболее прочную двухатомную молекулу Опишите эту молекулу с помощью метода молекулярных орбиталей. 2. В виде каких соединений встречаются щелочные металлы в природе Как можно получить щелочные металлы в свободном виде 3. Какими физическими и химическими свойствами обладают щелочные металлы. Где они применяются 4. Как получают оксиды щелочных металлов и какими свойствами они обладают Как в ряду ЫгО—МагО—КгО— —КЬгО—СзгО изменяется химическая активность 5. Какие из щелочных металлов при сгорании образуют оксиды ЭгО, а какие пероксиды Э2О2 и надпероксиды ЭО2 Какова структура этих соединений Приведите примеры соответствующих реакций получения этих кислородных соединений. Где применяются кислородные соединения щелочных металлов 6. Какова термическая устойчивость и растворимость в воде гидроксидов щелочных металлов Как называются гидроксиды щелочных металлов Каким способом получают гидроксиды в промышленности Разберите процесс электролиза водного раствора хлорида калия на графитовых электродах. . Каков характер связи в молекулах гидридов щелочных металлов Какие продукты получаются при гидролизе гидридов В чем заключается окислительно-восстановительный механизм этой реакции 8. Как можно получить нитриды щелочных металлов Какова их термическая устойчивость Что получается при гидролизе иитридов Напишите реакцию гидролиза нитрида лития. [c.55]

    Диоксид — полупроводник п-типа, обладающий электронной проводимостью, близкой к проводимости металлов. Получение а- и р-модификаций, их физические и электрохимические свойства приведены в обзорах [19, 20]. На дву-окисносвинцовых анодах кислород выделяется с большим перенапряжением. По данным [20], наклон г—ф-кривых в кислых растворах составляет 120—140 мВ, а в щелочных при низких плотностях тока 79 мВ и 230 мВ — при высоких. Выделение кислорода идет через замедленный разряд молекул воды или ОН-ионов с образованием радикалов ОН, рекомбинация которых также протекает с конечной скоростью [21]. Присутствие на сильноразвитой поверхности диоксида свинца активных частиц -ОНадс придает этому аноду особые каталитические свойства, позволяющие проводить многие реакции электрохимического синтеза. [c.16]

    Возможность применения хроматографии в обоих названных областях объясняется тем, что цель ее применения состоит в разделении смесей . При очевидном препаративном значении метода, состоящем в получении чистых соединений, в аналитической химии предварительное количественное разделение смесей позволяет в последующем идентифицировать компоненты и определить их содержание простыми (даже неспецифическими) химическими, физико-химическими или физическими методами. Естественно, что использовать иногда сравнительно нродолн ительные хроматографические приемы целесообразно лишь в тех случаях, когда анализ смеси трудно или даже невозможно произвести обычными способами. Это касается прежде всего смесей элементов с очень близкими свойствами, в подавляющем бо,льшииство случаев находящихся в одной и той же группе периодической системы Д. И. Менделеева (щелочные и щелочноземельные элементы, редкоземельные элементы с иттрием и скандием, следующие за ними пары элементов, почти идентичные вследствие ланта-нидного сжатия — цирконий и гафний, ниобий и тантал, молибден и вольфрам галогены, платиновые металлы, элементы подгруппы >келеза и пр.). Поэтому представляется рациональным рассмотреть работы [c.135]

    Многочисленные соответствующие электролиты разрабатываются для получения более твердых и блестящих покрытий. Эти электролиты включают кислые, нейтральные и щелочные растворы, растворы, свободные от цианидов. В тех случаях, где требуется максимальная электропроводность, следует получать очень чистые покрытия, и наоборот, для обеспечения специальных физических характеристик следует получать покрытия, сплавленные с различным количеством благородных или других металлов, таких как серебро, медь, никель, кобальт, индий. Твердость таких покрытий может достигать максимального значения около HV 400 по сравнению с HV 50 для мягкого золотого покрытия. Коррозионные исследования в промышленной и морской атмосферах, проведенные Бакером [19], показали, что защитные свойства твердого покрытия сопоставимы со свойствами покрытий мягкими металлами и что толщина, составляющая только 0,0025 мм, дает высокие защитные свойства для сплавов на медной основе при выдержке их в течение шести месяцев. [c.454]


Смотреть страницы где упоминается термин Получение и физические свойства щелочных металлов: [c.355]    [c.83]    [c.68]    [c.77]    [c.132]    [c.219]    [c.339]    [c.215]    [c.269]   
Смотреть главы в:

Неорганическая химия -> Получение и физические свойства щелочных металлов




ПОИСК





Смотрите так же термины и статьи:

Металлы получение

Металлы свойства

Металлы свойства физические

Свойства щелочных

Щелочные металлы получение

получение и свойства



© 2025 chem21.info Реклама на сайте