Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Цепная реакция переноса электрона (ЕТС-процесс)

    В результате малых окислительно-восстановительных потенциалов системы Си ul СиИ соли меди легко вступают в процесс переноса электрона и, таким образом, способны к инициированию и обрыву свободнорадикальных цепных реакций, а в некоторых случаях своим участием могут изменять ход цепной реакции. [c.374]

    В третьем издании курса рассмотрены вопросы, которые приобрели фундаментальное значение, но не затрагивались в прежних изданиях. В гл. III ( Элементарные химические реакции ) введен параграф, посвященный вычислению констант скоростей с помощью корреляционных соотношений, рассматриваемые типы элементарных реакций дополнены реакциями переноса электронов, лежащими в основе большого числа окислительно-восстановительных процессов. В параграфе, посвященном методу квазисгяционарных концентраций, подробно рассмотрена общая теория стационарных реакций, введено понятие маршрута и с этих позиций рассмотрены кинетические схемы основных типов сложных реакций — сопрялжнных, каталитических и цепных. [c.6]


    Реакции окисления, в которых атмосферный кислород реагирует с горючими газами и парами, настолько хорошо известны и часто протекают так быстро, что, естественно, возникает тенденция рассматривать молекулу кислорода как весьма реакционноспособную. В действительности она химически весьма инертна по отношению к другим молекулам, а быстрота процессов горения обусловлена реакцией кислорода со свободными радикалами в стадии роста цепных реакций [1]. Цепные реакции протекают также и при медленном окислении насыщенных, ненасыщенных углеводородов, их производных и некоторых неорганических веществ как в растворах, так и в чистых жидкостях. Цепной характер этих автоокисли-тельных реакций был впервые установлен Бэкстрёмом путем сравнения фотохимического и термического окисления альдегидов и сульфита натрия (см. стр. 359). Подобно всем цепным реакциям, скорости этих реакций можно увеличить, добавляя катализаторы, дающие соответствующие свободные радикалы при термическом или фотохимическом разложении или за счет реакции переноса электрона их скорости можно уменьшить введением ингибиторов, которые заменяют активные радикалы неактивными или молекулами. Некатализируемые реакции автоокисления обычно идут медленно, потому что медленной является начальная стадия взаимодействия между реагентами, приводящая к образованию свободных радикалов. Однако при некоторых обстоятельствах реакции автоокисления обнаруживают самоускорение или автокатализ, обусловленный бирадикальными свойствами молекулы или атома кислорода. Поэтому представляет интерес рассмотреть некоторые общие особенности реакций автоокисления в связи с реакционно-способностью молекулы кислорода. [c.444]

    Рассматривая третий путь — обратный поток энергии вдоль оси пламени в направлении стабилизатора, начинающийся в светящейся зоне и проходящий через вершину пламеии элементарного объема зажигания, — следует предполагать целый ряд возможных путей переноса энергии, например излучением, с помощью электронов, протонов, свободных радикалов, атомов и заряженных радикалов. Электроны и протоны присутствуют в чрезвычайно малых концентрациях, радикалы обладают сравнительно малой подвижностью, а столкновения радикалов, приводящие к обрыву цепи, ограничивают длину цепи, поэтому они не играют существенной роли в изучаемом процессе. Поглощение лучистой энергии маловероятно, но имеются надежные экспериментальные доказательства легкой рекомбинации атомов водорода, которые обладают большой подвижностью и по сравнению с другими радикалами могут мигрировать относительно далеко, пока в результате тройного столкновения не высвободится энергия рекомбинации. В результате рекомбинации атомов водорода Н—Н выделяется 103 ккал/моль. Атомы водорода, выделяя тепло, инициируют также цепные реакции горения в предварительно перемешанной смеси прп непламенных температурах. Диффузия и рекомбинация атомов водорода рассматривались в качестве одного из звеньев механизма, определяющего скорость распространения пламени в свежую смесь. Здесь эта схема также принимается в качестве механизма, посредством которого тепло подводится в элементарный объем зажигания и тем самым оказывает влияние на пределы устойчивости. Эта точка зрения подтверждается результатами работы Лапидуса, Розена и Уилхелма [6], которые экспериментально установили, что скорость зажигания и распространения пламени от одного конца щели горелки до другого существенно изменяется (причем сохраняется воспроизводимость) в зависимости от каталитического характера стенок устья горелки. Предполагая, что различные скорости распространения пламени обусловлены изменением концентрации свободных радикалов во фронте пламени вследствие их рекомбинации на поверхности, авторы предложили теоретическую модель, с помощью которой удалось количественно определить значения коэффициентов рекомбинации на поверхности по отношению к платиновой поверхности. В случае сухих поверхностей относительные коэффициенты имели следующие значения платина Ю" , латунь 10 , окись магния 10 ". Все поверхности, покрытые влагой, дают значения коэффициента рекомбинации меньше 10" . Таким образом, если радикалы могут достигать поверхности стабилизатора, как это указы- [c.239]


    Известны также реакции замещения в неактивированных аренах, связанные с переносом одного электрона, т. е. радикальные процессы, а часто даже цепные реакции. Подобные реакции 8ык1 приводят к тем же результатам, что и ионное нуклеофильное замещение. [c.479]

    Изложены наиболее важные экспериментальные данные по электровосстановлению органических перекисей и критически рассмотрены различные теории, относящиеся и механизму процесса. Изложение включает следующие аспекты радикально-цепной механизм химических реакций перекисей, механизм установления стационарного потенциала и спонтанный распад перекисей при рз.чомь-нутой цепи, механизм катодного процесса на ртутном и илатиновом электродах. Наиболее полные данные имеются о поведении простейшего представителя — перекиси водорода, которая используется как модельное вещество. Сделаны следующие выводы. При потенциалах основной волны в электрохимическом акте непосредственно участвует (в зависимости. от pH) либо молекула перекиси, либо соответствующий анион возможно и одновременное участие обоих видов частиц. Предшествующий переносу электрона гомолитический распад перекиси (по Бокрису) маловероятен. Скорость реакции существенно зависит, помимо обычных электронных эффектов в молекуле, от адсорбируемости перекиси этим объясняется сильное влияние рода растворителя на потенциал полуволны. Кроме того, перекиси способны вступать в химическое взаимодействие с металлом электрода. В случае ртути в щелочной среде, происходит образование окиси и последующее электрохимическое восстановлеюю ее, приводящее к появлению предволны со спадом в лучае платины наблюдается распад перекиси на поверхности, и в электрохимическую реакцию вступает образующийся кислород. Иллюстраций 12. Библ. 51. назв. [c.384]

    В гл. 1 рассматриваются понятие электродного потенциала и его роль в синтетической органической электрохимии. В гл. 2 обсуждаются электроокислительное образование катион-радикалов и превращение их в дикатионы или продукты ЕСЕ. Глава 3 посвящена механизму гомогенной реакции стабильных катион-радикалов с различными нуклеофилами. Б гл. 4—7 приведен обзор гетерогенных реакций катион-радикалов. Обсуждаются также достижения теории МО, диапазон ее применимости и ограничения, а также полезность в плане предсказания позиционной реакционной способности. В гл. 8 затронуты вопросы цепных процессов с переносом электрона и каталитического использования in situ полученных катион-радикальных окислителей. [c.9]

    В фотоинициируемых и самопроизвольных реакциях SrnI стадия инициирования включает перенос электрона с нуклеофила на субстрат. Возможной стадией обрыва будет тогда сочетание радикал — радикал при условии, что разложение начального анион-радикала происходит достаточно быстро, чтобы арнл-радикал и радикал, полученный нз нуклеофила, не могли отойти друг от друга в результате диффузии, т. е. реакц дифф [реакция (5)]. Хотя по реакции (5) образуется продукт замещения, этот процесс не является цепным. [c.243]

    Осцилляторами реакций окисления-восстановления могут быть вещества и соединения, отличающиеся высокой реакционной способностью и обеспечивающие непрерывный процесс переноса электронов. Такими свойствами обладают прежде всего свободные радикалы. Они представляют собой отдельные атомы, их группы, молекулы, имеющие на внешней (валентной) орбитали неспаренный электрон. Способность осуществлять цепную реакцию обусловлена у них нескомпенсиро-ванными магнитными моментами неспаренных электронов, а легкость и быстрота вступления их в химическую реакцию -наличием свободной валентности. Характерным свойством свободных радикалов, связанным с электронным спиновым магнетизмом, является также их парамагнетизм. В отличие от большинства органических веществ клеток, являющихся диамагнетиками, отталкивающимися от магнита и ослабляющими поле, свободнорадикальные парамагнетики притягиваются полем и усиливают его. Особую роль могут играть радикалы с ферромагнитными свойствами, у которых величина добавочного поля в поле магнита ниже точки Кюри круто возрастает во много раз. При усилении поля магнита можно добиться увеличения добавочного поля, но лишь до определенного предела, после которого наступает насыщение. Выше точки Кюри ферромагнетики приобретают свойства парамагнетиков. Для определения зависимости магнитной восприимчивости от поля значение намагниченности следует разделить на соответствующие значения магнитной восприимчивости. Восприимчивость резко возрастает в области малых полей, достигает максимума, а затем убывает. [c.79]

    Реакции фотозамещения являются сложными, по крайней мере, двухстадийными процессами и протекают путем фото , 1С-социации субстрата и последующего присоединения реагечта или отрыва от него атома либо путем присоединения реагента к возбужденной молекуле и последующего отщепления замепдае-мой группы. В последнее время активно изучаются реакции фотозамещения, протекающие по цепным ион-радикальным механизмам [278—280], где первичной стадией инициирования, вероятно, является перенос электрона. [c.211]


    Свободные радикалы — это частицы, обладающие высокой химической активностью и весьма малым временем жизни. Они образуются в цепных процессах, например в процессах горения и полимеризации, а также в системах под действием света и ионизирующих излучений. Интерес к природе этих частиц, условиям их возникновения, времени жизни и роли, которую они играют в механизме процессов, всегда был очень велик. Однако глубокое и интенсивное исследование свободных радикалов стало возможным лишь после открытия в 1945 году Е. К. За-войским явления электронного парамагнитного резонанса (ЭПР) и развитого на основе этого открытия метода ЭПР-спектросконии. К тому же свободные радикалы научились стабилизировать в твердой фазе (в матрицах ) при низких температурах. В этих условиях радикалы сохраняются в течение времени, достаточного для их идентификации, исследования пх свойств и структуры, а также реакций превращения. Сопоставление данных ЭПР о радикалах, образующихся при облучении твердой и жидкой фаз, показывает, что принципиальных различий как в величинах радиационных выходов, так и в типе радикалов нет. Это позволяет с теми или иными ограничениями переносить на жидкую фазу результаты ЭПР-спектроскопии, полученные для твердой фазы. [c.7]


Смотреть страницы где упоминается термин Цепная реакция переноса электрона (ЕТС-процесс): [c.1200]    [c.54]    [c.702]    [c.622]    [c.109]    [c.7]    [c.702]    [c.7]    [c.272]    [c.312]    [c.6]    [c.622]    [c.74]    [c.121]    [c.121]    [c.146]    [c.309]   
Смотреть главы в:

Электроокисление в органической химии -> Цепная реакция переноса электрона (ЕТС-процесс)




ПОИСК





Смотрите так же термины и статьи:

Процесс цепной

Реакции переноса электрона

Цепные реакции

Цепные реакции Реакции цепные



© 2025 chem21.info Реклама на сайте